Metamath Proof Explorer


Theorem aks6d1c1rh

Description: Claim 1 of AKS primality proof with collapsed definitions since their ease of use is no longer needed. (Contributed by metakunt, 1-May-2025)

Ref Expression
Hypotheses aks6d1c1rh.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c1rh.2 P = chr K
aks6d1c1rh.3 φ K Field
aks6d1c1rh.4 φ P
aks6d1c1rh.5 φ R
aks6d1c1rh.6 φ N
aks6d1c1rh.7 φ P N
aks6d1c1rh.8 φ N gcd R = 1
aks6d1c1rh.9 φ F : 0 A 0
aks6d1c1rh.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c1rh.11 φ A 0
aks6d1c1rh.12 φ U 0
aks6d1c1rh.13 φ L 0
aks6d1c1rh.14 E = P U N P L
aks6d1c1rh.15 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c1rh.16 φ x Base K P mulGrp K x K RingIso K
Assertion aks6d1c1rh φ E ˙ G F

Proof

Step Hyp Ref Expression
1 aks6d1c1rh.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c1rh.2 P = chr K
3 aks6d1c1rh.3 φ K Field
4 aks6d1c1rh.4 φ P
5 aks6d1c1rh.5 φ R
6 aks6d1c1rh.6 φ N
7 aks6d1c1rh.7 φ P N
8 aks6d1c1rh.8 φ N gcd R = 1
9 aks6d1c1rh.9 φ F : 0 A 0
10 aks6d1c1rh.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c1rh.11 φ A 0
12 aks6d1c1rh.12 φ U 0
13 aks6d1c1rh.13 φ L 0
14 aks6d1c1rh.14 E = P U N P L
15 aks6d1c1rh.15 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
16 aks6d1c1rh.16 φ x Base K P mulGrp K x K RingIso K
17 nfv z e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
18 nfv y e mulGrp K eval 1 K f z = eval 1 K f e mulGrp K z
19 fveq2 y = z eval 1 K f y = eval 1 K f z
20 19 oveq2d y = z e mulGrp K eval 1 K f y = e mulGrp K eval 1 K f z
21 oveq2 y = z e mulGrp K y = e mulGrp K z
22 21 fveq2d y = z eval 1 K f e mulGrp K y = eval 1 K f e mulGrp K z
23 20 22 eqeq12d y = z e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y e mulGrp K eval 1 K f z = eval 1 K f e mulGrp K z
24 17 18 23 cbvralw y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y z mulGrp K PrimRoots R e mulGrp K eval 1 K f z = eval 1 K f e mulGrp K z
25 24 3anbi3i e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y e f Base Poly 1 K z mulGrp K PrimRoots R e mulGrp K eval 1 K f z = eval 1 K f e mulGrp K z
26 25 opabbii e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y = e f | e f Base Poly 1 K z mulGrp K PrimRoots R e mulGrp K eval 1 K f z = eval 1 K f e mulGrp K z
27 1 26 eqtri ˙ = e f | e f Base Poly 1 K z mulGrp K PrimRoots R e mulGrp K eval 1 K f z = eval 1 K f e mulGrp K z
28 eqid Poly 1 K = Poly 1 K
29 eqid Base Poly 1 K = Base Poly 1 K
30 eqid var 1 K = var 1 K
31 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
32 eqid mulGrp K = mulGrp K
33 eqid mulGrp K = mulGrp K
34 eqid algSc Poly 1 K = algSc Poly 1 K
35 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
36 eqid eval 1 K = eval 1 K
37 eqid + Poly 1 K = + Poly 1 K
38 27 28 29 30 31 32 33 34 35 2 36 37 3 4 5 6 7 8 9 10 11 12 13 14 15 16 aks6d1c1 φ E ˙ G F