| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c1rh.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c1rh.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c1rh.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c1rh.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c1rh.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c1rh.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c1rh.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c1rh.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c1rh.9 | ⊢ ( 𝜑  →  𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 10 |  | aks6d1c1rh.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c1rh.11 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | aks6d1c1rh.12 | ⊢ ( 𝜑  →  𝑈  ∈  ℕ0 ) | 
						
							| 13 |  | aks6d1c1rh.13 | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 14 |  | aks6d1c1rh.14 | ⊢ 𝐸  =  ( ( 𝑃 ↑ 𝑈 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐿 ) ) | 
						
							| 15 |  | aks6d1c1rh.15 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 16 |  | aks6d1c1rh.16 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 )  =  ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) ) | 
						
							| 23 | 20 22 | eqeq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  ↔  ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) ) ) | 
						
							| 24 | 17 18 23 | cbvralw | ⊢ ( ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  ↔  ∀ 𝑧  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) ) | 
						
							| 25 | 24 | 3anbi3i | ⊢ ( ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) )  ↔  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑧  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) ) ) | 
						
							| 26 | 25 | opabbii | ⊢ { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) }  =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑧  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) ) } | 
						
							| 27 | 1 26 | eqtri | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑧  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑧 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑧 ) ) ) } | 
						
							| 28 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 30 |  | eqid | ⊢ ( var1 ‘ 𝐾 )  =  ( var1 ‘ 𝐾 ) | 
						
							| 31 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 32 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 33 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 34 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 35 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( eval1 ‘ 𝐾 )  =  ( eval1 ‘ 𝐾 ) | 
						
							| 37 |  | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 38 | 27 28 29 30 31 32 33 34 35 2 36 37 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | aks6d1c1 | ⊢ ( 𝜑  →  𝐸  ∼  ( 𝐺 ‘ 𝐹 ) ) |