| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c2.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c2.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c2.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c2.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c2.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c2.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c2.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c2.9 | ⊢ ( 𝜑  →  𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 10 |  | aks6d1c2.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c2.11 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | aks6d1c2.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c2.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c2.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c2.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c2.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c2.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c2.18 | ⊢ 𝐵  =  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 19 |  | aks6d1c2.19 | ⊢ 𝐶  =  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) ) | 
						
							| 20 |  | aks6d1c2.20 | ⊢ ( 𝜑  →  𝐼  ∈  𝐶 ) | 
						
							| 21 |  | aks6d1c2.21 | ⊢ ( 𝜑  →  𝐽  ∈  𝐶 ) | 
						
							| 22 |  | aks6d1c2.22 | ⊢ ( 𝜑  →  𝐼  <  𝐽 ) | 
						
							| 23 |  | aks6d1c2.23 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 24 |  | aks6d1c2.24 | ⊢ 𝑋  =  ( var1 ‘ 𝐾 ) | 
						
							| 25 |  | aks6d1c2.25 | ⊢ 𝑆  =  ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) | 
						
							| 26 |  | aks6d1c2.26 | ⊢ ( 𝜑  →  𝑈  ∈  ℕ ) | 
						
							| 27 |  | aks6d1c2.27 | ⊢ ( 𝜑  →  𝐽  =  ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ) | 
						
							| 28 |  | aks6d1c2p3.1 | ⊢ ( 𝜑  →  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 29 |  | aks6d1c2p3.2 | ⊢ ( 𝜑  →  𝑟  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 30 |  | aks6d1c2p3.3 | ⊢ ( 𝜑  →  𝑜  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 31 |  | aks6d1c2p3.4 | ⊢ ( 𝜑  →  𝐽  =  ( 𝑟 𝐸 𝑜 ) ) | 
						
							| 32 |  | aks6d1c2p3.5 | ⊢ ( 𝜑  →  𝑝  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 33 |  | aks6d1c2p3.6 | ⊢ ( 𝜑  →  𝑞  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 34 |  | aks6d1c2p3.7 | ⊢ ( 𝜑  →  𝐼  =  ( 𝑝 𝐸 𝑞 ) ) | 
						
							| 35 |  | aks6d1c2p3.8 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ0 ) | 
						
							| 36 | 12 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) ) | 
						
							| 37 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  𝑘  =  𝑟 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑟 ) ) | 
						
							| 39 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  𝑙  =  𝑜 ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) | 
						
							| 41 | 38 40 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ) | 
						
							| 42 |  | elfznn0 | ⊢ ( 𝑟  ∈  ( 0 ... 𝐵 )  →  𝑟  ∈  ℕ0 ) | 
						
							| 43 | 29 42 | syl | ⊢ ( 𝜑  →  𝑟  ∈  ℕ0 ) | 
						
							| 44 |  | elfznn0 | ⊢ ( 𝑜  ∈  ( 0 ... 𝐵 )  →  𝑜  ∈  ℕ0 ) | 
						
							| 45 | 30 44 | syl | ⊢ ( 𝜑  →  𝑜  ∈  ℕ0 ) | 
						
							| 46 |  | ovexd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∈  V ) | 
						
							| 47 | 36 41 43 45 46 | ovmpod | ⊢ ( 𝜑  →  ( 𝑟 𝐸 𝑜 )  =  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ) | 
						
							| 48 | 31 47 | eqtrd | ⊢ ( 𝜑  →  𝐽  =  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( 𝜑  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 50 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  𝑘  =  𝑝 ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑝 ) ) | 
						
							| 52 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  𝑙  =  𝑞 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) | 
						
							| 54 | 51 53 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ) | 
						
							| 55 |  | elfznn0 | ⊢ ( 𝑝  ∈  ( 0 ... 𝐵 )  →  𝑝  ∈  ℕ0 ) | 
						
							| 56 | 32 55 | syl | ⊢ ( 𝜑  →  𝑝  ∈  ℕ0 ) | 
						
							| 57 |  | elfznn0 | ⊢ ( 𝑞  ∈  ( 0 ... 𝐵 )  →  𝑞  ∈  ℕ0 ) | 
						
							| 58 | 33 57 | syl | ⊢ ( 𝜑  →  𝑞  ∈  ℕ0 ) | 
						
							| 59 |  | ovexd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∈  V ) | 
						
							| 60 | 36 54 56 58 59 | ovmpod | ⊢ ( 𝜑  →  ( 𝑝 𝐸 𝑞 )  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ) | 
						
							| 61 | 34 60 | eqtrd | ⊢ ( 𝜑  →  𝐼  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( 𝜑  →  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 65 |  | oveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 )  =  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 67 | 64 66 | eqeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  ↔  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 68 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 69 | 68 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 70 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 71 |  | elmapg | ⊢ ( ( ℕ0  ∈  V  ∧  ( 0 ... 𝐴 )  ∈  V )  →  ( 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 72 | 69 70 71 | syl2anc | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 73 | 28 72 | mpbid | ⊢ ( 𝜑  →  𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 74 |  | eqid | ⊢ ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 8 73 10 11 56 58 74 14 15 | aks6d1c1rh | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∼  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 76 | 1 75 | aks6d1c1p1rcl | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑠 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 77 | 76 | simprd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑠 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 78 | 76 | simpld | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∈  ℕ ) | 
						
							| 79 | 1 77 78 | aks6d1c1p1 | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∼  ( 𝐺 ‘ 𝑠 )  ↔  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) | 
						
							| 80 | 75 79 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) | 
						
							| 81 | 67 80 16 | rspcdva | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 82 | 61 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  =  𝐼 ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 84 | 48 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  =  𝐽 ) | 
						
							| 85 | 84 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 86 | 27 | oveq1d | ⊢ ( 𝜑  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 87 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 88 |  | crngring | ⊢ ( 𝐾  ∈  CRing  →  𝐾  ∈  Ring ) | 
						
							| 89 | 87 88 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 90 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 91 | 90 | ringmgp | ⊢ ( 𝐾  ∈  Ring  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 92 | 89 91 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 93 | 26 | nnnn0d | ⊢ ( 𝜑  →  𝑈  ∈  ℕ0 ) | 
						
							| 94 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 95 | 93 94 | nn0mulcld | ⊢ ( 𝜑  →  ( 𝑈  ·  𝑅 )  ∈  ℕ0 ) | 
						
							| 96 | 90 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 97 | 87 96 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 98 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 99 | 97 94 98 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) ) | 
						
							| 100 | 99 | biimpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) ) | 
						
							| 101 | 16 100 | mpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) | 
						
							| 102 | 101 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 103 | 35 95 102 | 3jca | ⊢ ( 𝜑  →  ( 𝐼  ∈  ℕ0  ∧  ( 𝑈  ·  𝑅 )  ∈  ℕ0  ∧  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) | 
						
							| 104 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 105 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( +g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 106 | 104 98 105 | mulgnn0dir | ⊢ ( ( ( mulGrp ‘ 𝐾 )  ∈  Mnd  ∧  ( 𝐼  ∈  ℕ0  ∧  ( 𝑈  ·  𝑅 )  ∈  ℕ0  ∧  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) )  →  ( ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 107 | 92 103 106 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 108 | 93 94 102 | 3jca | ⊢ ( 𝜑  →  ( 𝑈  ∈  ℕ0  ∧  𝑅  ∈  ℕ0  ∧  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) | 
						
							| 109 | 104 98 | mulgnn0ass | ⊢ ( ( ( mulGrp ‘ 𝐾 )  ∈  Mnd  ∧  ( 𝑈  ∈  ℕ0  ∧  𝑅  ∈  ℕ0  ∧  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) )  →  ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 110 | 92 108 109 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 111 | 101 | simp2d | ⊢ ( 𝜑  →  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( 𝜑  →  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) ) | 
						
							| 113 |  | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 114 | 104 98 113 | mulgnn0z | ⊢ ( ( ( mulGrp ‘ 𝐾 )  ∈  Mnd  ∧  𝑈  ∈  ℕ0 )  →  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 115 | 92 93 114 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 116 | 112 115 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 117 | 110 116 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 118 | 117 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) ) | 
						
							| 119 | 104 98 92 35 102 | mulgnn0cld | ⊢ ( 𝜑  →  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 120 | 104 105 113 | mndrid | ⊢ ( ( ( mulGrp ‘ 𝐾 )  ∈  Mnd  ∧  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) )  →  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 121 | 92 119 120 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 122 | 118 121 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈  ·  𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 123 | 107 122 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 124 | 86 123 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 125 | 85 124 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 126 | 83 125 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 127 | 126 | fveq2d | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 128 | 63 | oveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 129 |  | oveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 130 | 129 | fveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 131 | 128 130 | eqeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  ↔  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 132 |  | eqid | ⊢ ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  =  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) | 
						
							| 133 | 1 2 3 4 5 6 7 8 73 10 11 43 45 132 14 15 | aks6d1c1rh | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∼  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 134 | 1 133 | aks6d1c1p1rcl | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑠 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 135 | 134 | simpld | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∈  ℕ ) | 
						
							| 136 | 1 77 135 | aks6d1c1p1 | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∼  ( 𝐺 ‘ 𝑠 )  ↔  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) | 
						
							| 137 | 133 136 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) | 
						
							| 138 | 131 137 16 | rspcdva | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 139 | 138 | eqcomd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 140 | 127 139 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 141 | 81 140 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 142 | 62 141 | eqtr2d | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 143 | 49 142 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |