Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c2.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c2.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c2.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c2.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c2.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c2.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c2.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c2.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c2.9 |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
10 |
|
aks6d1c2.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c2.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
12 |
|
aks6d1c2.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c2.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c2.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c2.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c2.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c2.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c2.18 |
⊢ 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
19 |
|
aks6d1c2.19 |
⊢ 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
20 |
|
aks6d1c2.20 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐶 ) |
21 |
|
aks6d1c2.21 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐶 ) |
22 |
|
aks6d1c2.22 |
⊢ ( 𝜑 → 𝐼 < 𝐽 ) |
23 |
|
aks6d1c2.23 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
24 |
|
aks6d1c2.24 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
25 |
|
aks6d1c2.25 |
⊢ 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) |
26 |
|
aks6d1c2.26 |
⊢ ( 𝜑 → 𝑈 ∈ ℕ ) |
27 |
|
aks6d1c2.27 |
⊢ ( 𝜑 → 𝐽 = ( 𝐼 + ( 𝑈 · 𝑅 ) ) ) |
28 |
|
aks6d1c2p3.1 |
⊢ ( 𝜑 → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
29 |
|
aks6d1c2p3.2 |
⊢ ( 𝜑 → 𝑟 ∈ ( 0 ... 𝐵 ) ) |
30 |
|
aks6d1c2p3.3 |
⊢ ( 𝜑 → 𝑜 ∈ ( 0 ... 𝐵 ) ) |
31 |
|
aks6d1c2p3.4 |
⊢ ( 𝜑 → 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
32 |
|
aks6d1c2p3.5 |
⊢ ( 𝜑 → 𝑝 ∈ ( 0 ... 𝐵 ) ) |
33 |
|
aks6d1c2p3.6 |
⊢ ( 𝜑 → 𝑞 ∈ ( 0 ... 𝐵 ) ) |
34 |
|
aks6d1c2p3.7 |
⊢ ( 𝜑 → 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
35 |
|
aks6d1c2p3.8 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
36 |
12
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
37 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → 𝑘 = 𝑟 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑟 ) ) |
39 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → 𝑙 = 𝑜 ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) |
41 |
38 40
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
42 |
|
elfznn0 |
⊢ ( 𝑟 ∈ ( 0 ... 𝐵 ) → 𝑟 ∈ ℕ0 ) |
43 |
29 42
|
syl |
⊢ ( 𝜑 → 𝑟 ∈ ℕ0 ) |
44 |
|
elfznn0 |
⊢ ( 𝑜 ∈ ( 0 ... 𝐵 ) → 𝑜 ∈ ℕ0 ) |
45 |
30 44
|
syl |
⊢ ( 𝜑 → 𝑜 ∈ ℕ0 ) |
46 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ V ) |
47 |
36 41 43 45 46
|
ovmpod |
⊢ ( 𝜑 → ( 𝑟 𝐸 𝑜 ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
48 |
31 47
|
eqtrd |
⊢ ( 𝜑 → 𝐽 = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
49 |
48
|
oveq1d |
⊢ ( 𝜑 → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
50 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → 𝑘 = 𝑝 ) |
51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑝 ) ) |
52 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → 𝑙 = 𝑞 ) |
53 |
52
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) |
54 |
51 53
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
55 |
|
elfznn0 |
⊢ ( 𝑝 ∈ ( 0 ... 𝐵 ) → 𝑝 ∈ ℕ0 ) |
56 |
32 55
|
syl |
⊢ ( 𝜑 → 𝑝 ∈ ℕ0 ) |
57 |
|
elfznn0 |
⊢ ( 𝑞 ∈ ( 0 ... 𝐵 ) → 𝑞 ∈ ℕ0 ) |
58 |
33 57
|
syl |
⊢ ( 𝜑 → 𝑞 ∈ ℕ0 ) |
59 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ V ) |
60 |
36 54 56 58 59
|
ovmpod |
⊢ ( 𝜑 → ( 𝑝 𝐸 𝑞 ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
61 |
34 60
|
eqtrd |
⊢ ( 𝜑 → 𝐼 = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
65 |
|
oveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
66 |
65
|
fveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
67 |
64 66
|
eqeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ↔ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
68 |
|
nn0ex |
⊢ ℕ0 ∈ V |
69 |
68
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
70 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
71 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ... 𝐴 ) ∈ V ) → ( 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
72 |
69 70 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
73 |
28 72
|
mpbid |
⊢ ( 𝜑 → 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
74 |
|
eqid |
⊢ ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) |
75 |
1 2 3 4 5 6 7 8 73 10 11 56 58 74 14 15
|
aks6d1c1rh |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∼ ( 𝐺 ‘ 𝑠 ) ) |
76 |
1 75
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ ℕ ∧ ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
77 |
76
|
simprd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
78 |
76
|
simpld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ ℕ ) |
79 |
1 77 78
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∼ ( 𝐺 ‘ 𝑠 ) ↔ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) |
80 |
75 79
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) |
81 |
67 80 16
|
rspcdva |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
82 |
61
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) = 𝐼 ) |
83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
84 |
48
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) = 𝐽 ) |
85 |
84
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
86 |
27
|
oveq1d |
⊢ ( 𝜑 → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝐼 + ( 𝑈 · 𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
87 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
88 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
89 |
87 88
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
90 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
91 |
90
|
ringmgp |
⊢ ( 𝐾 ∈ Ring → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
92 |
89 91
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
93 |
26
|
nnnn0d |
⊢ ( 𝜑 → 𝑈 ∈ ℕ0 ) |
94 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
95 |
93 94
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑈 · 𝑅 ) ∈ ℕ0 ) |
96 |
90
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
97 |
87 96
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
98 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
99 |
97 94 98
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
100 |
99
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
101 |
16 100
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) |
102 |
101
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
103 |
35 95 102
|
3jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ℕ0 ∧ ( 𝑈 · 𝑅 ) ∈ ℕ0 ∧ 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
104 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
105 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
106 |
104 98 105
|
mulgnn0dir |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ ( 𝐼 ∈ ℕ0 ∧ ( 𝑈 · 𝑅 ) ∈ ℕ0 ∧ 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) → ( ( 𝐼 + ( 𝑈 · 𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
107 |
92 103 106
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 + ( 𝑈 · 𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
108 |
93 94 102
|
3jca |
⊢ ( 𝜑 → ( 𝑈 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
109 |
104 98
|
mulgnn0ass |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ ( 𝑈 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) → ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
110 |
92 108 109
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
111 |
101
|
simp2d |
⊢ ( 𝜑 → ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝜑 → ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
113 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) |
114 |
104 98 113
|
mulgnn0z |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ 𝑈 ∈ ℕ0 ) → ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
115 |
92 93 114
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
116 |
112 115
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
117 |
110 116
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
118 |
117
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
119 |
104 98 92 35 102
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
120 |
104 105 113
|
mndrid |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) → ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
121 |
92 119 120
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
122 |
118 121
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑈 · 𝑅 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
123 |
107 122
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐼 + ( 𝑈 · 𝑅 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
124 |
86 123
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
125 |
85 124
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
126 |
83 125
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
127 |
126
|
fveq2d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
128 |
63
|
oveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
129 |
|
oveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
130 |
129
|
fveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
131 |
128 130
|
eqeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ↔ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
132 |
|
eqid |
⊢ ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) |
133 |
1 2 3 4 5 6 7 8 73 10 11 43 45 132 14 15
|
aks6d1c1rh |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∼ ( 𝐺 ‘ 𝑠 ) ) |
134 |
1 133
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ ℕ ∧ ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
135 |
134
|
simpld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ ℕ ) |
136 |
1 77 135
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∼ ( 𝐺 ‘ 𝑠 ) ↔ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) |
137 |
133 136
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) |
138 |
131 137 16
|
rspcdva |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
139 |
138
|
eqcomd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
140 |
127 139
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
141 |
81 140
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
142 |
62 141
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
143 |
49 142
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |