| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c2a.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
| 2 |
|
aks6d1c2a.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 3 |
|
aks6d1c2a.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 4 |
|
aks6d1c2a.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
aks6d1c2a.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 6 |
|
aks6d1c2a.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
aks6d1c2a.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 8 |
|
aks6d1c2a.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 9 |
|
aks6d1c2a.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 10 |
|
aks6d1c2a.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 11 |
|
aks6d1c2a.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 12 |
|
aks6d1c2a.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 13 |
|
aks6d1c2a.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 14 |
|
aks6d1c2a.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 15 |
|
aks6d1c2a.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 16 |
|
aks6d1c2a.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
| 17 |
|
aks6d1c2a.18 |
⊢ 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 18 |
|
aks6d1c2a.19 |
⊢ 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
| 19 |
|
aks6d1c2a.20 |
⊢ ( 𝜑 → ( 𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ∧ 𝑃 ≠ 𝑄 ) ) |
| 20 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) → ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ) |
| 21 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) → 𝑏 < 𝑐 ) |
| 22 |
20 21
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) → ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) → ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) |
| 24 |
22 23
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) → ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) |
| 25 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝐾 ∈ Field ) |
| 26 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑃 ∈ ℙ ) |
| 27 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑅 ∈ ℕ ) |
| 28 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑁 ∈ ℕ ) |
| 29 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑃 ∥ 𝑁 ) |
| 30 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 31 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 32 |
31
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝐴 ) ) → 0 ∈ ℕ0 ) |
| 33 |
|
eqid |
⊢ ( 𝑗 ∈ ( 0 ... 𝐴 ) ↦ 0 ) = ( 𝑗 ∈ ( 0 ... 𝐴 ) ↦ 0 ) |
| 34 |
32 33
|
fmptd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → ( 𝑗 ∈ ( 0 ... 𝐴 ) ↦ 0 ) : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 35 |
10
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 36 |
13
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 37 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 38 |
15
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 39 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑏 ∈ 𝐶 ) |
| 40 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑐 ∈ 𝐶 ) |
| 41 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑏 < 𝑐 ) |
| 42 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 43 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
| 44 |
|
eqid |
⊢ ( ( 𝑐 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑏 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) = ( ( 𝑐 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑏 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) |
| 45 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑑 ∈ ℕ ) |
| 46 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) |
| 47 |
1 2 25 26 27 28 29 30 34 9 35 11 12 36 37 38 16 17 18 39 40 41 42 43 44 45 46
|
aks6d1c2lem4 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) ∧ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 48 |
47
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ 𝑑 ∈ ℕ ) → ( 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) ) |
| 49 |
48
|
rexlimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) → ( ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) ) |
| 50 |
49
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑏 < 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 51 |
24 50
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 52 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑏 < 𝑐 ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 𝐿 ‘ 𝑡 ) |
| 54 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 𝐿 ‘ 𝑠 ) |
| 55 |
|
fveq2 |
⊢ ( 𝑡 = 𝑠 → ( 𝐿 ‘ 𝑡 ) = ( 𝐿 ‘ 𝑠 ) ) |
| 56 |
53 54 55
|
cbvmpt |
⊢ ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) = ( 𝑠 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑠 ) ) |
| 57 |
56
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) = ( 𝑠 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑠 ) ) ) |
| 58 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ 𝑠 = 𝑏 ) → 𝑠 = 𝑏 ) |
| 59 |
58
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ 𝑠 = 𝑏 ) → ( 𝐿 ‘ 𝑠 ) = ( 𝐿 ‘ 𝑏 ) ) |
| 60 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑏 ∈ 𝐶 ) |
| 61 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝐿 ‘ 𝑏 ) ∈ V ) |
| 62 |
57 59 60 61
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( 𝐿 ‘ 𝑏 ) ) |
| 63 |
62
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝐿 ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) ) |
| 64 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ) |
| 65 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ 𝑠 = 𝑐 ) → 𝑠 = 𝑐 ) |
| 66 |
65
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ 𝑠 = 𝑐 ) → ( 𝐿 ‘ 𝑠 ) = ( 𝐿 ‘ 𝑐 ) ) |
| 67 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑐 ∈ 𝐶 ) |
| 68 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝐿 ‘ 𝑐 ) ∈ V ) |
| 69 |
57 66 67 68
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) = ( 𝐿 ‘ 𝑐 ) ) |
| 70 |
64 69
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( 𝐿 ‘ 𝑐 ) ) |
| 71 |
63 70
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝐿 ‘ 𝑏 ) = ( 𝐿 ‘ 𝑐 ) ) |
| 72 |
71
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝐿 ‘ 𝑐 ) = ( 𝐿 ‘ 𝑏 ) ) |
| 73 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → 𝑅 ∈ ℕ0 ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑅 ∈ ℕ0 ) |
| 76 |
75
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑅 ∈ ℕ0 ) |
| 77 |
|
fz0ssnn0 |
⊢ ( 0 ... 𝐵 ) ⊆ ℕ0 |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ⊆ ℕ0 ) |
| 79 |
78 78
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) |
| 80 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
| 81 |
6 4 7 5 8 11 12 80
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 82 |
81
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 83 |
81
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 84 |
82 83
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
| 85 |
84
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ) |
| 86 |
82 83
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 87 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 88 |
|
flge |
⊢ ( ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 89 |
84 87 88
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 90 |
86 89
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 91 |
85 90
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 92 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 93 |
91 92
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ) |
| 94 |
17
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 95 |
94
|
eleq1d |
⊢ ( 𝜑 → ( 𝐵 ∈ ℕ0 ↔ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ) ) |
| 96 |
93 95
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 97 |
96
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 98 |
96
|
nn0zd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 99 |
|
eluz |
⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∈ ( ℤ≥ ‘ 0 ) ↔ 0 ≤ 𝐵 ) ) |
| 100 |
87 98 99
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ℤ≥ ‘ 0 ) ↔ 0 ≤ 𝐵 ) ) |
| 101 |
97 100
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( ℤ≥ ‘ 0 ) ) |
| 102 |
|
fzn0 |
⊢ ( ( 0 ... 𝐵 ) ≠ ∅ ↔ 𝐵 ∈ ( ℤ≥ ‘ 0 ) ) |
| 103 |
101 102
|
sylibr |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ≠ ∅ ) |
| 104 |
103 103
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) ) |
| 105 |
|
xpnz |
⊢ ( ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) ↔ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
| 106 |
105
|
biimpi |
⊢ ( ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
| 107 |
104 106
|
syl |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
| 108 |
|
ssxpb |
⊢ ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ → ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ↔ ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) ) |
| 109 |
107 108
|
syl |
⊢ ( 𝜑 → ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ↔ ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) ) |
| 110 |
79 109
|
mpbird |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) |
| 111 |
|
imass2 |
⊢ ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ⊆ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 112 |
110 111
|
syl |
⊢ ( 𝜑 → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ⊆ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 113 |
|
nfv |
⊢ Ⅎ 𝑜 𝜑 |
| 114 |
19
|
simp1d |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
| 115 |
19
|
simp2d |
⊢ ( 𝜑 → 𝑄 ∥ 𝑁 ) |
| 116 |
19
|
simp3d |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
| 117 |
6 4 7 11 114 115 116
|
aks6d1c2p2 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ ) |
| 118 |
|
f1f |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
| 119 |
117 118
|
syl |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
| 120 |
119
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 121 |
120
|
fnfund |
⊢ ( 𝜑 → Fun 𝐸 ) |
| 122 |
119
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑜 ) ∈ ℕ ) |
| 123 |
113 121 122
|
funimassd |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℕ ) |
| 124 |
112 123
|
sstrd |
⊢ ( 𝜑 → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ⊆ ℕ ) |
| 125 |
18
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 126 |
125
|
sseq1d |
⊢ ( 𝜑 → ( 𝐶 ⊆ ℕ ↔ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ⊆ ℕ ) ) |
| 127 |
124 126
|
mpbird |
⊢ ( 𝜑 → 𝐶 ⊆ ℕ ) |
| 128 |
127
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝐶 ⊆ ℕ ) |
| 129 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ 𝐶 ) |
| 130 |
128 129
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ ℕ ) |
| 131 |
130
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ ℤ ) |
| 132 |
131
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑐 ∈ ℤ ) |
| 133 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑏 ∈ 𝐶 ) |
| 134 |
128 133
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑏 ∈ ℕ ) |
| 135 |
134
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑏 ∈ ℤ ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑏 ∈ ℤ ) |
| 137 |
80 12
|
zndvds |
⊢ ( ( 𝑅 ∈ ℕ0 ∧ 𝑐 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑐 ) = ( 𝐿 ‘ 𝑏 ) ↔ 𝑅 ∥ ( 𝑐 − 𝑏 ) ) ) |
| 138 |
76 132 136 137
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( ( 𝐿 ‘ 𝑐 ) = ( 𝐿 ‘ 𝑏 ) ↔ 𝑅 ∥ ( 𝑐 − 𝑏 ) ) ) |
| 139 |
72 138
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑅 ∥ ( 𝑐 − 𝑏 ) ) |
| 140 |
76
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑅 ∈ ℤ ) |
| 141 |
132 136
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝑐 − 𝑏 ) ∈ ℤ ) |
| 142 |
|
divides |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑐 − 𝑏 ) ∈ ℤ ) → ( 𝑅 ∥ ( 𝑐 − 𝑏 ) ↔ ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) |
| 143 |
140 141 142
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝑅 ∥ ( 𝑐 − 𝑏 ) ↔ ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) |
| 144 |
143
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝑅 ∥ ( 𝑐 − 𝑏 ) → ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) |
| 145 |
139 144
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) |
| 146 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑑 ∈ ℤ ) |
| 147 |
130
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑐 ∈ ℕ ) |
| 148 |
147
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑐 ∈ ℝ ) |
| 149 |
134
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑏 ∈ ℕ ) |
| 150 |
149
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑏 ∈ ℝ ) |
| 151 |
148 150
|
resubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑐 − 𝑏 ) ∈ ℝ ) |
| 152 |
5
|
nnrpd |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 153 |
152
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → 𝑅 ∈ ℝ+ ) |
| 154 |
153
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) → 𝑅 ∈ ℝ+ ) |
| 155 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → 𝑅 ∈ ℝ+ ) |
| 156 |
155
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑅 ∈ ℝ+ ) |
| 157 |
156
|
rpred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑅 ∈ ℝ ) |
| 158 |
52
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑏 < 𝑐 ) |
| 159 |
150 148
|
posdifd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑏 < 𝑐 ↔ 0 < ( 𝑐 − 𝑏 ) ) ) |
| 160 |
158 159
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 0 < ( 𝑐 − 𝑏 ) ) |
| 161 |
156
|
rpgt0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 0 < 𝑅 ) |
| 162 |
151 157 160 161
|
divgt0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 0 < ( ( 𝑐 − 𝑏 ) / 𝑅 ) ) |
| 163 |
157
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑅 ∈ ℂ ) |
| 164 |
146
|
zred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑑 ∈ ℝ ) |
| 165 |
164
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑑 ∈ ℂ ) |
| 166 |
163 165
|
mulcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑅 · 𝑑 ) = ( 𝑑 · 𝑅 ) ) |
| 167 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) |
| 168 |
166 167
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑅 · 𝑑 ) = ( 𝑐 − 𝑏 ) ) |
| 169 |
151
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑐 − 𝑏 ) ∈ ℂ ) |
| 170 |
161
|
gt0ne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑅 ≠ 0 ) |
| 171 |
169 163 165 170
|
divmuld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( ( ( 𝑐 − 𝑏 ) / 𝑅 ) = 𝑑 ↔ ( 𝑅 · 𝑑 ) = ( 𝑐 − 𝑏 ) ) ) |
| 172 |
168 171
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( ( 𝑐 − 𝑏 ) / 𝑅 ) = 𝑑 ) |
| 173 |
162 172
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 0 < 𝑑 ) |
| 174 |
146 173
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑑 ∈ ℤ ∧ 0 < 𝑑 ) ) |
| 175 |
|
elnnz |
⊢ ( 𝑑 ∈ ℕ ↔ ( 𝑑 ∈ ℤ ∧ 0 < 𝑑 ) ) |
| 176 |
174 175
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑑 ∈ ℕ ) |
| 177 |
167
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑐 − 𝑏 ) = ( 𝑑 · 𝑅 ) ) |
| 178 |
148
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑐 ∈ ℂ ) |
| 179 |
150
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑏 ∈ ℂ ) |
| 180 |
167 169
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑑 · 𝑅 ) ∈ ℂ ) |
| 181 |
178 179 180
|
subaddd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( ( 𝑐 − 𝑏 ) = ( 𝑑 · 𝑅 ) ↔ ( 𝑏 + ( 𝑑 · 𝑅 ) ) = 𝑐 ) ) |
| 182 |
177 181
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → ( 𝑏 + ( 𝑑 · 𝑅 ) ) = 𝑐 ) |
| 183 |
182
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) ∧ ( 𝑑 ∈ ℤ ∧ ( 𝑑 · 𝑅 ) = ( 𝑐 − 𝑏 ) ) ) → 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) |
| 184 |
145 176 183
|
reximssdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) |
| 185 |
52 184
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) → ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) |
| 186 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ∈ Fin ) |
| 187 |
|
xpfi |
⊢ ( ( ( 0 ... 𝐵 ) ∈ Fin ∧ ( 0 ... 𝐵 ) ∈ Fin ) → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ∈ Fin ) |
| 188 |
186 186 187
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ∈ Fin ) |
| 189 |
|
imafi |
⊢ ( ( Fun 𝐸 ∧ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ∈ Fin ) → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ∈ Fin ) |
| 190 |
121 188 189
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ∈ Fin ) |
| 191 |
125
|
eleq1d |
⊢ ( 𝜑 → ( 𝐶 ∈ Fin ↔ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ∈ Fin ) ) |
| 192 |
190 191
|
mpbird |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 193 |
80
|
zncrng |
⊢ ( 𝑅 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
| 194 |
73 193
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
| 195 |
|
crngring |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing → ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring ) |
| 196 |
194 195
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring ) |
| 197 |
12
|
zrhrhm |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring → 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 198 |
196 197
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 199 |
198
|
imaexd |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ) |
| 200 |
|
hashclb |
⊢ ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin ↔ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) ) |
| 201 |
199 200
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin ↔ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) ) |
| 202 |
81 201
|
mpbird |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin ) |
| 203 |
|
hashcl |
⊢ ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 204 |
202 203
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 205 |
204
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 206 |
204
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 207 |
|
sqrtmsq |
⊢ ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 208 |
205 206 207
|
syl2anc |
⊢ ( 𝜑 → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 209 |
208
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 210 |
205 206
|
jca |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 211 |
|
sqrtmul |
⊢ ( ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∧ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 212 |
210 210 211
|
syl2anc |
⊢ ( 𝜑 → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 213 |
205 206
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
| 214 |
213
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ) |
| 215 |
205 206
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 216 |
213 87 88
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 217 |
215 216
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 218 |
214 217
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 219 |
218 92
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ) |
| 220 |
219 95
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 221 |
220
|
nn0red |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 222 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 223 |
221 222
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 1 ) ∈ ℝ ) |
| 224 |
|
flltp1 |
⊢ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) < ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) + 1 ) ) |
| 225 |
213 224
|
syl |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) < ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) + 1 ) ) |
| 226 |
94
|
oveq1d |
⊢ ( 𝜑 → ( 𝐵 + 1 ) = ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) + 1 ) ) |
| 227 |
225 226
|
breqtrrd |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) < ( 𝐵 + 1 ) ) |
| 228 |
213 223 213 223 215 227 215 227
|
ltmul12ad |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( ( 𝐵 + 1 ) · ( 𝐵 + 1 ) ) ) |
| 229 |
212 228
|
eqbrtrd |
⊢ ( 𝜑 → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( ( 𝐵 + 1 ) · ( 𝐵 + 1 ) ) ) |
| 230 |
209 229
|
eqbrtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) < ( ( 𝐵 + 1 ) · ( 𝐵 + 1 ) ) ) |
| 231 |
|
hashfz0 |
⊢ ( 𝐵 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝐵 ) ) = ( 𝐵 + 1 ) ) |
| 232 |
220 231
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐵 ) ) = ( 𝐵 + 1 ) ) |
| 233 |
232 232
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝐵 ) ) · ( ♯ ‘ ( 0 ... 𝐵 ) ) ) = ( ( 𝐵 + 1 ) · ( 𝐵 + 1 ) ) ) |
| 234 |
230 233
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) < ( ( ♯ ‘ ( 0 ... 𝐵 ) ) · ( ♯ ‘ ( 0 ... 𝐵 ) ) ) ) |
| 235 |
186 186
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ∈ Fin ∧ ( 0 ... 𝐵 ) ∈ Fin ) ) |
| 236 |
|
hashxp |
⊢ ( ( ( 0 ... 𝐵 ) ∈ Fin ∧ ( 0 ... 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( ( ♯ ‘ ( 0 ... 𝐵 ) ) · ( ♯ ‘ ( 0 ... 𝐵 ) ) ) ) |
| 237 |
235 236
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( ( ♯ ‘ ( 0 ... 𝐵 ) ) · ( ♯ ‘ ( 0 ... 𝐵 ) ) ) ) |
| 238 |
234 237
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) < ( ♯ ‘ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 239 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ∈ V ) |
| 240 |
239 239
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ∈ V ∧ ( 0 ... 𝐵 ) ∈ V ) ) |
| 241 |
|
xpexg |
⊢ ( ( ( 0 ... 𝐵 ) ∈ V ∧ ( 0 ... 𝐵 ) ∈ V ) → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ∈ V ) |
| 242 |
240 241
|
syl |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ∈ V ) |
| 243 |
242
|
mptexd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) ∈ V ) |
| 244 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 245 |
110
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) → 𝑤 ∈ ( ℕ0 × ℕ0 ) ) |
| 246 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) → 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
| 247 |
244 245 246
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) → ( 𝐸 ‘ 𝑤 ) ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 248 |
|
eqid |
⊢ ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) = ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) |
| 249 |
247 248
|
fmptd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⟶ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 250 |
119 110
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) ) |
| 251 |
250
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⟶ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⟶ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 252 |
249 251
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⟶ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 253 |
|
f1resf1 |
⊢ ( ( 𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ ∧ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ∧ ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⟶ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) → ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 254 |
117 110 252 253
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 255 |
|
eqidd |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) = ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
| 256 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 257 |
250 255 256
|
f1eq123d |
⊢ ( 𝜑 → ( ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 258 |
254 257
|
mpbid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 259 |
|
df-ima |
⊢ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ran ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
| 260 |
259
|
a1i |
⊢ ( 𝜑 → ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ran ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 261 |
250
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐸 ↾ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ran ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) ) |
| 262 |
260 261
|
eqtr2d |
⊢ ( 𝜑 → ran ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 263 |
258 262
|
jca |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ∧ ran ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 264 |
|
dff1o5 |
⊢ ( ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ( ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ∧ ran ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 265 |
263 264
|
sylibr |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 266 |
|
f1oeq1 |
⊢ ( 𝑢 = ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) → ( 𝑢 : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ( 𝑤 ∈ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ↦ ( 𝐸 ‘ 𝑤 ) ) : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 267 |
243 265 266
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑢 𝑢 : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 268 |
|
hasheqf1oi |
⊢ ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ∈ V → ( ∃ 𝑢 𝑢 : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) → ( ♯ ‘ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( ♯ ‘ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) ) |
| 269 |
242 268
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑢 𝑢 : ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) –1-1-onto→ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) → ( ♯ ‘ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( ♯ ‘ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) ) |
| 270 |
267 269
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) = ( ♯ ‘ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 271 |
238 270
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) < ( ♯ ‘ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 272 |
125
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) = ( ♯ ‘ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) ) |
| 273 |
271 272
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) < ( ♯ ‘ 𝐶 ) ) |
| 274 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 275 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 276 |
274 275
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 277 |
198 276
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 278 |
277
|
ffnd |
⊢ ( 𝜑 → 𝐿 Fn ℤ ) |
| 279 |
278
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐶 ) → 𝐿 Fn ℤ ) |
| 280 |
|
resss |
⊢ ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ⊆ 𝐸 |
| 281 |
280
|
a1i |
⊢ ( 𝜑 → ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ⊆ 𝐸 ) |
| 282 |
|
rnss |
⊢ ( ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ⊆ 𝐸 → ran ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ⊆ ran 𝐸 ) |
| 283 |
281 282
|
syl |
⊢ ( 𝜑 → ran ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ⊆ ran 𝐸 ) |
| 284 |
|
df-ima |
⊢ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) |
| 285 |
284
|
a1i |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ) |
| 286 |
285
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ran 𝐸 ↔ ran ( 𝐸 ↾ ( ℕ0 × ℕ0 ) ) ⊆ ran 𝐸 ) ) |
| 287 |
283 286
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ran 𝐸 ) |
| 288 |
|
frn |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ → ran 𝐸 ⊆ ℕ ) |
| 289 |
119 288
|
syl |
⊢ ( 𝜑 → ran 𝐸 ⊆ ℕ ) |
| 290 |
287 289
|
sstrd |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℕ ) |
| 291 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
| 292 |
291
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℤ ) |
| 293 |
290 292
|
sstrd |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
| 294 |
293
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐶 ) → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
| 295 |
125
|
sseq1d |
⊢ ( 𝜑 → ( 𝐶 ⊆ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ↔ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ⊆ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 296 |
112 295
|
mpbird |
⊢ ( 𝜑 → 𝐶 ⊆ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 297 |
296
|
sseld |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐶 → 𝑡 ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 298 |
297
|
imp |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐶 ) → 𝑡 ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 299 |
|
fnfvima |
⊢ ( ( 𝐿 Fn ℤ ∧ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ∧ 𝑡 ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) → ( 𝐿 ‘ 𝑡 ) ∈ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 300 |
279 294 298 299
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐶 ) → ( 𝐿 ‘ 𝑡 ) ∈ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 301 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) |
| 302 |
300 301
|
fmptd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) : 𝐶 ⟶ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 303 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 304 |
303
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℝ ) |
| 305 |
127 304
|
sstrd |
⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
| 306 |
192 202 273 302 305
|
hashnexinjle |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐶 ∃ 𝑐 ∈ 𝐶 ( ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑏 ) = ( ( 𝑡 ∈ 𝐶 ↦ ( 𝐿 ‘ 𝑡 ) ) ‘ 𝑐 ) ∧ 𝑏 < 𝑐 ) ) |
| 307 |
185 306
|
reximddv2 |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐶 ∃ 𝑐 ∈ 𝐶 ( 𝑏 < 𝑐 ∧ ∃ 𝑑 ∈ ℕ 𝑐 = ( 𝑏 + ( 𝑑 · 𝑅 ) ) ) ) |
| 308 |
51 307
|
r19.29vva |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |