| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c2.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c2.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c2.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c2.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c2.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c2.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c2.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c2.9 | ⊢ ( 𝜑  →  𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 10 |  | aks6d1c2.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c2.11 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | aks6d1c2.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c2.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c2.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c2.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c2.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c2.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c2.18 | ⊢ 𝐵  =  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 19 |  | aks6d1c2.19 | ⊢ 𝐶  =  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) ) | 
						
							| 20 |  | aks6d1c2.20 | ⊢ ( 𝜑  →  𝐼  ∈  𝐶 ) | 
						
							| 21 |  | aks6d1c2.21 | ⊢ ( 𝜑  →  𝐽  ∈  𝐶 ) | 
						
							| 22 |  | aks6d1c2.22 | ⊢ ( 𝜑  →  𝐼  <  𝐽 ) | 
						
							| 23 |  | aks6d1c2.23 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 24 |  | aks6d1c2.24 | ⊢ 𝑋  =  ( var1 ‘ 𝐾 ) | 
						
							| 25 |  | aks6d1c2.25 | ⊢ 𝑆  =  ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) | 
						
							| 26 |  | aks6d1c2.26 | ⊢ ( 𝜑  →  𝑈  ∈  ℕ ) | 
						
							| 27 |  | aks6d1c2.27 | ⊢ ( 𝜑  →  𝐽  =  ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ) | 
						
							| 28 |  | fvexd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  V ) | 
						
							| 29 |  | cnvexg | ⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  V  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  V ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  V ) | 
						
							| 31 | 30 | imaexd | ⊢ ( 𝜑  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑠 𝜑 | 
						
							| 33 |  | fvexd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 )  ∈  V ) | 
						
							| 34 | 33 17 | fmptd | ⊢ ( 𝜑  →  𝐻 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ V ) | 
						
							| 35 | 34 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 36 | 35 | fnfund | ⊢ ( 𝜑  →  Fun  𝐻 ) | 
						
							| 37 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑆  =  ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) ) | 
						
							| 39 | 38 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( eval1 ‘ 𝐾 )  =  ( eval1 ‘ 𝐾 ) | 
						
							| 41 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 42 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 43 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 44 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐾  ∈  CRing ) | 
						
							| 46 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ℎ  =  𝑠 )  →  ℎ  =  𝑠 ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ℎ  =  𝑠 )  →  ( 𝐺 ‘ ℎ )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ℎ  =  𝑠 )  →  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ) | 
						
							| 50 | 49 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ℎ  =  𝑠 )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 52 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 )  ∈  V ) | 
						
							| 53 | 46 50 51 52 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑠 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) | 
						
							| 54 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 55 | 54 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 56 | 44 55 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 57 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 58 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 59 | 56 57 58 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) ) | 
						
							| 60 | 59 | biimpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) ) | 
						
							| 61 | 16 60 | mpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) | 
						
							| 62 | 61 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 63 | 54 42 | mgpbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 64 | 62 63 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑀  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 66 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐾  ∈  Field ) | 
						
							| 67 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 68 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑅  ∈  ℕ ) | 
						
							| 69 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 70 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 71 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 72 |  | elmapi | ⊢ ( 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  →  𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 74 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 75 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 76 | 75 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  0  ∈  ℕ0 ) | 
						
							| 77 |  | eqid | ⊢ ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) )  =  ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) ) | 
						
							| 78 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 79 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 80 | 1 2 66 67 68 69 70 71 73 10 74 76 76 77 78 79 | aks6d1c1rh | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) )  ∼  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 81 | 1 80 | aks6d1c1p1rcl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) )  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑠 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 82 | 81 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐺 ‘ 𝑠 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 83 | 40 41 42 43 45 65 82 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 84 | 53 83 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑠 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 85 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 86 | 41 | ply1crng | ⊢ ( 𝐾  ∈  CRing  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 87 | 44 86 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 88 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 89 | 88 | crngmgp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CRing  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 90 | 87 89 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 91 | 90 | cmnmndd | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 92 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  𝐽  =  ( 𝑟 𝐸 𝑜 ) ) | 
						
							| 93 | 12 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) ) | 
						
							| 94 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  𝑘  =  𝑟 ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑟 ) ) | 
						
							| 96 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  𝑙  =  𝑜 ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) | 
						
							| 98 | 95 97 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  ( 𝑘  =  𝑟  ∧  𝑙  =  𝑜 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ) | 
						
							| 99 |  | fz0ssnn0 | ⊢ ( 0 ... 𝐵 )  ⊆  ℕ0 | 
						
							| 100 | 99 | a1i | ⊢ ( 𝜑  →  ( 0 ... 𝐵 )  ⊆  ℕ0 ) | 
						
							| 101 | 100 | sselda | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  𝑟  ∈  ℕ0 ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝑟  ∈  ℕ0 ) | 
						
							| 103 | 99 | sseli | ⊢ ( 𝑜  ∈  ( 0 ... 𝐵 )  →  𝑜  ∈  ℕ0 ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝑜  ∈  ℕ0 ) | 
						
							| 105 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∈  V ) | 
						
							| 106 | 93 98 102 104 105 | ovmpod | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑟 𝐸 𝑜 )  =  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) ) | 
						
							| 107 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 108 | 4 107 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 109 | 108 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 112 | 111 102 | nn0expcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑃 ↑ 𝑟 )  ∈  ℕ0 ) | 
						
							| 113 | 109 | nn0zd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 114 | 108 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 115 | 6 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 116 | 115 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 117 |  | dvdsval2 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑃  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 118 | 113 114 116 117 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 119 | 7 118 | mpbid | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 120 | 6 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 121 | 108 | nnrpd | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 122 | 115 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑁 ) | 
						
							| 123 | 120 121 122 | divge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑁  /  𝑃 ) ) | 
						
							| 124 | 119 123 | jca | ⊢ ( 𝜑  →  ( ( 𝑁  /  𝑃 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 125 |  | elnn0z | ⊢ ( ( 𝑁  /  𝑃 )  ∈  ℕ0  ↔  ( ( 𝑁  /  𝑃 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 126 | 124 125 | sylibr | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℕ0 ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℕ0 ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℕ0 ) | 
						
							| 129 | 128 104 | nn0expcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 )  ∈  ℕ0 ) | 
						
							| 130 | 112 129 | nn0mulcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∈  ℕ0 ) | 
						
							| 131 | 106 130 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑟 𝐸 𝑜 )  ∈  ℕ0 ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  ( 𝑟 𝐸 𝑜 )  ∈  ℕ0 ) | 
						
							| 133 | 92 132 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  𝐽  ∈  ℕ0 ) | 
						
							| 134 | 19 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) ) ) | 
						
							| 135 | 21 134 | eleqtrd | ⊢ ( 𝜑  →  𝐽  ∈  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) ) ) | 
						
							| 136 | 6 4 7 12 | aks6d1c2p1 | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ ) | 
						
							| 137 | 136 | ffnd | ⊢ ( 𝜑  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 138 | 100 100 | jca | ⊢ ( 𝜑  →  ( ( 0 ... 𝐵 )  ⊆  ℕ0  ∧  ( 0 ... 𝐵 )  ⊆  ℕ0 ) ) | 
						
							| 139 | 18 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 140 |  | eqid | ⊢ ( ℤ/nℤ ‘ 𝑅 )  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 141 | 6 4 7 5 8 12 13 140 | hashscontpowcl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 142 | 141 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ ) | 
						
							| 143 | 141 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 144 | 142 143 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ ) | 
						
							| 145 | 144 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 146 | 142 143 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 147 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 148 |  | flge | ⊢ ( ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ↔  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 149 | 144 147 148 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ↔  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 150 | 146 149 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 151 | 145 150 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 152 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 153 | 151 152 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 154 | 139 153 | eqeltrd | ⊢ ( 𝜑  →  𝐵  ∈  ℕ0 ) | 
						
							| 155 |  | elnn0z | ⊢ ( 𝐵  ∈  ℕ0  ↔  ( 𝐵  ∈  ℤ  ∧  0  ≤  𝐵 ) ) | 
						
							| 156 | 154 155 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℤ  ∧  0  ≤  𝐵 ) ) | 
						
							| 157 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 158 |  | eluz1 | ⊢ ( 0  ∈  ℤ  →  ( 𝐵  ∈  ( ℤ≥ ‘ 0 )  ↔  ( 𝐵  ∈  ℤ  ∧  0  ≤  𝐵 ) ) ) | 
						
							| 159 | 157 158 | ax-mp | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 0 )  ↔  ( 𝐵  ∈  ℤ  ∧  0  ≤  𝐵 ) ) | 
						
							| 160 | 156 159 | sylibr | ⊢ ( 𝜑  →  𝐵  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 161 |  | fzn0 | ⊢ ( ( 0 ... 𝐵 )  ≠  ∅  ↔  𝐵  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 162 | 160 161 | sylibr | ⊢ ( 𝜑  →  ( 0 ... 𝐵 )  ≠  ∅ ) | 
						
							| 163 | 162 162 | jca | ⊢ ( 𝜑  →  ( ( 0 ... 𝐵 )  ≠  ∅  ∧  ( 0 ... 𝐵 )  ≠  ∅ ) ) | 
						
							| 164 |  | xpnz | ⊢ ( ( ( 0 ... 𝐵 )  ≠  ∅  ∧  ( 0 ... 𝐵 )  ≠  ∅ )  ↔  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ≠  ∅ ) | 
						
							| 165 | 163 164 | sylib | ⊢ ( 𝜑  →  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ≠  ∅ ) | 
						
							| 166 |  | ssxpb | ⊢ ( ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ≠  ∅  →  ( ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ⊆  ( ℕ0  ×  ℕ0 )  ↔  ( ( 0 ... 𝐵 )  ⊆  ℕ0  ∧  ( 0 ... 𝐵 )  ⊆  ℕ0 ) ) ) | 
						
							| 167 | 165 166 | syl | ⊢ ( 𝜑  →  ( ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ⊆  ( ℕ0  ×  ℕ0 )  ↔  ( ( 0 ... 𝐵 )  ⊆  ℕ0  ∧  ( 0 ... 𝐵 )  ⊆  ℕ0 ) ) ) | 
						
							| 168 | 138 167 | mpbird | ⊢ ( 𝜑  →  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ⊆  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 169 |  | ovelimab | ⊢ ( ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  ∧  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ⊆  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐽  ∈  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) )  ↔  ∃ 𝑟  ∈  ( 0 ... 𝐵 ) ∃ 𝑜  ∈  ( 0 ... 𝐵 ) 𝐽  =  ( 𝑟 𝐸 𝑜 ) ) ) | 
						
							| 170 | 137 168 169 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ∈  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) )  ↔  ∃ 𝑟  ∈  ( 0 ... 𝐵 ) ∃ 𝑜  ∈  ( 0 ... 𝐵 ) 𝐽  =  ( 𝑟 𝐸 𝑜 ) ) ) | 
						
							| 171 | 135 170 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ( 0 ... 𝐵 ) ∃ 𝑜  ∈  ( 0 ... 𝐵 ) 𝐽  =  ( 𝑟 𝐸 𝑜 ) ) | 
						
							| 172 | 133 171 | r19.29vva | ⊢ ( 𝜑  →  𝐽  ∈  ℕ0 ) | 
						
							| 173 | 44 | crngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 174 | 24 41 43 | vr1cl | ⊢ ( 𝐾  ∈  Ring  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 175 | 173 174 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 176 | 88 43 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 177 | 176 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 178 | 177 | eleq2i | ⊢ ( 𝑋  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  ↔  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 179 | 175 178 | sylibr | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 180 | 85 23 91 172 179 | mulgnn0cld | ⊢ ( 𝜑  →  ( 𝐽  ↑  𝑋 )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 181 | 180 176 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐽  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐽  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 183 | 175 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 184 | 40 24 42 41 43 45 84 | evl1vard | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 185 | 184 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐻 ‘ 𝑠 ) ) | 
						
							| 186 | 183 185 | jca | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 187 | 172 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐽  ∈  ℕ0 ) | 
						
							| 188 | 40 41 42 43 45 84 186 23 58 187 | evl1expd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( 𝐽  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) ) | 
						
							| 189 | 188 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 190 | 53 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 191 | 3 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐾  ∈  Field ) | 
						
							| 192 | 4 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 193 | 5 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑅  ∈  ℕ ) | 
						
							| 194 | 6 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 195 | 7 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 196 | 8 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 197 | 9 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 198 | 11 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 199 | 14 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 200 | 15 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 201 | 16 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 202 | 20 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  ∈  𝐶 ) | 
						
							| 203 | 21 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐽  ∈  𝐶 ) | 
						
							| 204 | 22 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  <  𝐽 ) | 
						
							| 205 | 26 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑈  ∈  ℕ ) | 
						
							| 206 | 27 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐽  =  ( 𝐼  +  ( 𝑈  ·  𝑅 ) ) ) | 
						
							| 207 | 51 | ad6antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 208 |  | simp-6r | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑟  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 209 |  | simp-5r | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑜  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 210 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐽  =  ( 𝑟 𝐸 𝑜 ) ) | 
						
							| 211 |  | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑝  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 212 |  | simplr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑞  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 213 |  | simpr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  =  ( 𝑝 𝐸 𝑞 ) ) | 
						
							| 214 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  =  ( 𝑝 𝐸 𝑞 ) ) | 
						
							| 215 | 12 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) ) | 
						
							| 216 |  | simprl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  𝑘  =  𝑝 ) | 
						
							| 217 | 216 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑝 ) ) | 
						
							| 218 |  | simprr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  𝑙  =  𝑞 ) | 
						
							| 219 | 218 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) | 
						
							| 220 | 217 219 | oveq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  ∧  ( 𝑘  =  𝑝  ∧  𝑙  =  𝑞 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ) | 
						
							| 221 | 100 | sselda | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  →  𝑝  ∈  ℕ0 ) | 
						
							| 222 | 221 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  →  𝑝  ∈  ℕ0 ) | 
						
							| 223 | 222 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑝  ∈  ℕ0 ) | 
						
							| 224 | 99 | sseli | ⊢ ( 𝑞  ∈  ( 0 ... 𝐵 )  →  𝑞  ∈  ℕ0 ) | 
						
							| 225 | 224 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  →  𝑞  ∈  ℕ0 ) | 
						
							| 226 | 225 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑞  ∈  ℕ0 ) | 
						
							| 227 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∈  V ) | 
						
							| 228 | 215 220 223 226 227 | ovmpod | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( 𝑝 𝐸 𝑞 )  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ) | 
						
							| 229 | 214 228 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  =  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) ) ) | 
						
							| 230 | 109 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 231 | 230 223 | nn0expcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( 𝑃 ↑ 𝑝 )  ∈  ℕ0 ) | 
						
							| 232 | 126 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℕ0 ) | 
						
							| 233 | 232 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℕ0 ) | 
						
							| 234 | 233 226 | nn0expcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 )  ∈  ℕ0 ) | 
						
							| 235 | 231 234 | nn0mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( ( 𝑃 ↑ 𝑝 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑞 ) )  ∈  ℕ0 ) | 
						
							| 236 | 229 235 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  ∈  ℕ0 ) | 
						
							| 237 | 20 134 | eleqtrd | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) ) ) | 
						
							| 238 |  | ovelimab | ⊢ ( ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  ∧  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) )  ⊆  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐼  ∈  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) )  ↔  ∃ 𝑝  ∈  ( 0 ... 𝐵 ) ∃ 𝑞  ∈  ( 0 ... 𝐵 ) 𝐼  =  ( 𝑝 𝐸 𝑞 ) ) ) | 
						
							| 239 | 137 168 238 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) )  ↔  ∃ 𝑝  ∈  ( 0 ... 𝐵 ) ∃ 𝑞  ∈  ( 0 ... 𝐵 ) 𝐼  =  ( 𝑝 𝐸 𝑞 ) ) ) | 
						
							| 240 | 237 239 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  ( 0 ... 𝐵 ) ∃ 𝑞  ∈  ( 0 ... 𝐵 ) 𝐼  =  ( 𝑝 𝐸 𝑞 ) ) | 
						
							| 241 | 236 240 | r19.29vva | ⊢ ( 𝜑  →  𝐼  ∈  ℕ0 ) | 
						
							| 242 | 241 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐼  ∈  ℕ0 ) | 
						
							| 243 | 242 | ad6antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  𝐼  ∈  ℕ0 ) | 
						
							| 244 | 1 2 191 192 193 194 195 196 197 10 198 12 13 199 200 201 17 18 19 202 203 204 23 24 25 205 206 207 208 209 210 211 212 213 243 | aks6d1c2lem3 | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  ∧  𝑝  ∈  ( 0 ... 𝐵 ) )  ∧  𝑞  ∈  ( 0 ... 𝐵 ) )  ∧  𝐼  =  ( 𝑝 𝐸 𝑞 ) )  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 245 | 240 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  ∃ 𝑝  ∈  ( 0 ... 𝐵 ) ∃ 𝑞  ∈  ( 0 ... 𝐵 ) 𝐼  =  ( 𝑝 𝐸 𝑞 ) ) | 
						
							| 246 | 244 245 | r19.29vva | ⊢ ( ( ( ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 247 | 171 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ∃ 𝑟  ∈  ( 0 ... 𝐵 ) ∃ 𝑜  ∈  ( 0 ... 𝐵 ) 𝐽  =  ( 𝑟 𝐸 𝑜 ) ) | 
						
							| 248 | 246 247 | r19.29vva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) | 
						
							| 249 | 53 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 )  =  ( 𝐻 ‘ 𝑠 ) ) | 
						
							| 250 | 249 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 251 | 190 248 250 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 252 | 40 41 42 43 45 84 186 23 58 242 | evl1expd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) ) | 
						
							| 253 | 252 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 254 | 253 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 255 | 189 251 254 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 256 | 182 255 | jca | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( 𝐽  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) | 
						
							| 257 | 85 23 91 241 179 | mulgnn0cld | ⊢ ( 𝜑  →  ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 258 | 176 | eleq2i | ⊢ ( ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 259 | 257 258 | sylibr | ⊢ ( 𝜑  →  ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 260 | 259 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 261 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 262 | 260 261 | jca | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) | 
						
							| 263 |  | eqid | ⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( -g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 264 |  | eqid | ⊢ ( -g ‘ 𝐾 )  =  ( -g ‘ 𝐾 ) | 
						
							| 265 | 40 41 42 43 45 84 256 262 263 264 | evl1subd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) ) | 
						
							| 266 | 265 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) | 
						
							| 267 | 45 | crnggrpd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐾  ∈  Grp ) | 
						
							| 268 | 40 41 42 43 45 84 260 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 269 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 270 | 42 269 264 | grpsubid | ⊢ ( ( 𝐾  ∈  Grp  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 271 | 267 268 270 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 272 | 266 271 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 273 | 39 272 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 274 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  V ) | 
						
							| 275 |  | elsng | ⊢ ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  V  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 276 | 274 275 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 277 | 273 276 | mpbird | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  { ( 0g ‘ 𝐾 ) } ) | 
						
							| 278 | 87 | crnggrpd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Grp ) | 
						
							| 279 | 43 263 | grpsubcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Grp  ∧  ( 𝐽  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( 𝐼  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 280 | 278 181 259 279 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 281 | 25 280 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 282 |  | eqid | ⊢ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) )  =  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) | 
						
							| 283 | 40 41 282 42 | evl1rhm | ⊢ ( 𝐾  ∈  CRing  →  ( eval1 ‘ 𝐾 )  ∈  ( ( Poly1 ‘ 𝐾 )  RingHom  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 284 | 44 283 | syl | ⊢ ( 𝜑  →  ( eval1 ‘ 𝐾 )  ∈  ( ( Poly1 ‘ 𝐾 )  RingHom  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 285 |  | eqid | ⊢ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) )  =  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) | 
						
							| 286 | 43 285 | rhmf | ⊢ ( ( eval1 ‘ 𝐾 )  ∈  ( ( Poly1 ‘ 𝐾 )  RingHom  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) )  →  ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 287 | 284 286 | syl | ⊢ ( 𝜑  →  ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 288 | 287 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑆  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 289 | 288 | ex | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) ) | 
						
							| 290 | 281 289 | mpd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 291 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  ∈  V ) | 
						
							| 292 | 282 42 | pwsbas | ⊢ ( ( 𝐾  ∈  Field  ∧  ( Base ‘ 𝐾 )  ∈  V )  →  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 293 | 3 291 292 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 294 | 290 293 | eleqtrrd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) ) ) | 
						
							| 295 | 291 291 | elmapd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  ↔  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 296 | 294 295 | mpbid | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 297 |  | ffn | ⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 )  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  Fn  ( Base ‘ 𝐾 ) ) | 
						
							| 298 | 296 297 | syl | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  Fn  ( Base ‘ 𝐾 ) ) | 
						
							| 299 | 298 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  Fn  ( Base ‘ 𝐾 ) ) | 
						
							| 300 |  | fnfun | ⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  Fn  ( Base ‘ 𝐾 )  →  Fun  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) | 
						
							| 301 | 299 300 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  Fun  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) | 
						
							| 302 |  | fndm | ⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  Fn  ( Base ‘ 𝐾 )  →  dom  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 303 | 298 302 | syl | ⊢ ( 𝜑  →  dom  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 304 | 303 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  dom  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 305 | 84 304 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑠 )  ∈  dom  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) | 
						
							| 306 |  | fvimacnv | ⊢ ( ( Fun  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  ∧  ( 𝐻 ‘ 𝑠 )  ∈  dom  ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( 𝐻 ‘ 𝑠 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 307 | 301 305 306 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( 𝐻 ‘ 𝑠 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 308 | 277 307 | mpbid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑠 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 309 | 32 36 308 | funimassd | ⊢ ( 𝜑  →  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ⊆  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 310 | 31 309 | ssexd | ⊢ ( 𝜑  →  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V ) | 
						
							| 311 | 25 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) | 
						
							| 312 | 311 | fveq2d | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) ) ) | 
						
							| 313 |  | eqid | ⊢ ( deg1 ‘ 𝐾 )  =  ( deg1 ‘ 𝐾 ) | 
						
							| 314 |  | isfld | ⊢ ( 𝐾  ∈  Field  ↔  ( 𝐾  ∈  DivRing  ∧  𝐾  ∈  CRing ) ) | 
						
							| 315 | 314 | biimpi | ⊢ ( 𝐾  ∈  Field  →  ( 𝐾  ∈  DivRing  ∧  𝐾  ∈  CRing ) ) | 
						
							| 316 | 315 | simpld | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  DivRing ) | 
						
							| 317 |  | drngnzr | ⊢ ( 𝐾  ∈  DivRing  →  𝐾  ∈  NzRing ) | 
						
							| 318 | 316 317 | syl | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  NzRing ) | 
						
							| 319 | 3 318 | syl | ⊢ ( 𝜑  →  𝐾  ∈  NzRing ) | 
						
							| 320 | 313 41 24 88 23 | deg1pw | ⊢ ( ( 𝐾  ∈  NzRing  ∧  𝐼  ∈  ℕ0 )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) )  =  𝐼 ) | 
						
							| 321 | 319 241 320 | syl2anc | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) )  =  𝐼 ) | 
						
							| 322 | 321 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) ) ) | 
						
							| 323 | 313 41 24 88 23 | deg1pw | ⊢ ( ( 𝐾  ∈  NzRing  ∧  𝐽  ∈  ℕ0 )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) )  =  𝐽 ) | 
						
							| 324 | 319 172 323 | syl2anc | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) )  =  𝐽 ) | 
						
							| 325 | 324 | eqcomd | ⊢ ( 𝜑  →  𝐽  =  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ) | 
						
							| 326 | 22 322 325 | 3brtr3d | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼  ↑  𝑋 ) )  <  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ) | 
						
							| 327 | 41 313 173 43 263 181 259 326 | deg1sub | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ) | 
						
							| 328 | 312 327 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) ) ) | 
						
							| 329 | 328 324 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  =  𝐽 ) | 
						
							| 330 | 329 172 | eqeltrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 331 |  | eqid | ⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 332 |  | fldidom | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  IDomn ) | 
						
							| 333 | 3 332 | syl | ⊢ ( 𝜑  →  𝐾  ∈  IDomn ) | 
						
							| 334 | 313 41 331 43 | deg1nn0clb | ⊢ ( ( 𝐾  ∈  Ring  ∧  𝑆  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( 𝑆  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ℕ0 ) ) | 
						
							| 335 | 173 281 334 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ℕ0 ) ) | 
						
							| 336 | 330 335 | mpbird | ⊢ ( 𝜑  →  𝑆  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 337 | 41 43 313 40 269 331 333 281 336 | fta1g | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ) | 
						
							| 338 |  | hashbnd | ⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V  ∧  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ℕ0  ∧  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) )  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } )  ∈  Fin ) | 
						
							| 339 | 31 330 337 338 | syl3anc | ⊢ ( 𝜑  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } )  ∈  Fin ) | 
						
							| 340 |  | hashcl | ⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } )  ∈  Fin  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℕ0 ) | 
						
							| 341 | 339 340 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℕ0 ) | 
						
							| 342 |  | hashss | ⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V  ∧  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ⊆  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 343 | 31 309 342 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 344 |  | hashbnd | ⊢ ( ( ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V  ∧  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) ) )  →  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  Fin ) | 
						
							| 345 | 310 341 343 344 | syl3anc | ⊢ ( 𝜑  →  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  Fin ) | 
						
							| 346 |  | hashcl | ⊢ ( ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  Fin  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℕ0 ) | 
						
							| 347 | 345 346 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℕ0 ) | 
						
							| 348 | 347 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 349 | 341 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ ) | 
						
							| 350 | 115 154 | nn0expcld | ⊢ ( 𝜑  →  ( 𝑁 ↑ 𝐵 )  ∈  ℕ0 ) | 
						
							| 351 | 350 | nn0red | ⊢ ( 𝜑  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 352 | 172 | nn0red | ⊢ ( 𝜑  →  𝐽  ∈  ℝ ) | 
						
							| 353 | 324 352 | eqeltrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) )  ∈  ℝ ) | 
						
							| 354 | 327 353 | eqeltrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 355 | 312 354 | eqeltrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 356 | 107 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 357 | 4 356 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 358 | 357 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 359 | 358 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 360 | 359 102 | reexpcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑃 ↑ 𝑟 )  ∈  ℝ ) | 
						
							| 361 | 120 357 114 | redivcld | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℝ ) | 
						
							| 362 | 361 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℝ ) | 
						
							| 363 | 362 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℝ ) | 
						
							| 364 | 363 104 | reexpcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 )  ∈  ℝ ) | 
						
							| 365 | 360 364 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ∈  ℝ ) | 
						
							| 366 | 357 154 | reexpcld | ⊢ ( 𝜑  →  ( 𝑃 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 367 | 366 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑃 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 368 | 361 154 | reexpcld | ⊢ ( 𝜑  →  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 369 | 368 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 370 | 367 369 | remulcld | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝐵 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) )  ∈  ℝ ) | 
						
							| 371 | 370 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝐵 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) )  ∈  ℝ ) | 
						
							| 372 | 120 154 | reexpcld | ⊢ ( 𝜑  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 373 | 372 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 374 | 373 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 375 | 367 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑃 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 376 | 369 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 377 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 378 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 379 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 380 | 379 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 381 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 382 | 4 381 | syl | ⊢ ( 𝜑  →  1  <  𝑃 ) | 
						
							| 383 | 378 357 382 | ltled | ⊢ ( 𝜑  →  1  ≤  𝑃 ) | 
						
							| 384 | 377 378 357 380 383 | letrd | ⊢ ( 𝜑  →  0  ≤  𝑃 ) | 
						
							| 385 | 384 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  𝑃 ) | 
						
							| 386 | 385 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  𝑃 ) | 
						
							| 387 | 359 102 386 | expge0d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  ( 𝑃 ↑ 𝑟 ) ) | 
						
							| 388 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  ( 𝑁  /  𝑃 ) ) | 
						
							| 389 | 388 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  ( 𝑁  /  𝑃 ) ) | 
						
							| 390 | 363 104 389 | expge0d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) ) | 
						
							| 391 | 108 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑃 ) | 
						
							| 392 | 391 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  1  ≤  𝑃 ) | 
						
							| 393 | 392 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  1  ≤  𝑃 ) | 
						
							| 394 |  | elfzuz3 | ⊢ ( 𝑟  ∈  ( 0 ... 𝐵 )  →  𝐵  ∈  ( ℤ≥ ‘ 𝑟 ) ) | 
						
							| 395 | 394 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  𝐵  ∈  ( ℤ≥ ‘ 𝑟 ) ) | 
						
							| 396 | 395 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝐵  ∈  ( ℤ≥ ‘ 𝑟 ) ) | 
						
							| 397 | 359 393 396 | leexp2ad | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑃 ↑ 𝑟 )  ≤  ( 𝑃 ↑ 𝐵 ) ) | 
						
							| 398 | 357 | recnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 399 | 398 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝑃 )  =  𝑃 ) | 
						
							| 400 | 108 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 401 |  | dvdsle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∥  𝑁  →  𝑃  ≤  𝑁 ) ) | 
						
							| 402 | 400 6 401 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  →  𝑃  ≤  𝑁 ) ) | 
						
							| 403 | 7 402 | mpd | ⊢ ( 𝜑  →  𝑃  ≤  𝑁 ) | 
						
							| 404 | 399 403 | eqbrtrd | ⊢ ( 𝜑  →  ( 1  ·  𝑃 )  ≤  𝑁 ) | 
						
							| 405 | 378 120 121 | lemuldivd | ⊢ ( 𝜑  →  ( ( 1  ·  𝑃 )  ≤  𝑁  ↔  1  ≤  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 406 | 404 405 | mpbid | ⊢ ( 𝜑  →  1  ≤  ( 𝑁  /  𝑃 ) ) | 
						
							| 407 | 406 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  1  ≤  ( 𝑁  /  𝑃 ) ) | 
						
							| 408 | 407 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  1  ≤  ( 𝑁  /  𝑃 ) ) | 
						
							| 409 |  | elfzuz3 | ⊢ ( 𝑜  ∈  ( 0 ... 𝐵 )  →  𝐵  ∈  ( ℤ≥ ‘ 𝑜 ) ) | 
						
							| 410 | 409 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝐵  ∈  ( ℤ≥ ‘ 𝑜 ) ) | 
						
							| 411 | 363 408 410 | leexp2ad | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 )  ≤  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) ) | 
						
							| 412 | 360 375 364 376 387 390 397 411 | lemul12ad | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ≤  ( ( 𝑃 ↑ 𝐵 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) ) ) | 
						
							| 413 | 120 | recnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 414 | 413 398 114 | divcan2d | ⊢ ( 𝜑  →  ( 𝑃  ·  ( 𝑁  /  𝑃 ) )  =  𝑁 ) | 
						
							| 415 | 414 | eqcomd | ⊢ ( 𝜑  →  𝑁  =  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 416 | 415 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  →  𝑁  =  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 417 | 416 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝑁  =  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 418 | 417 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁 ↑ 𝐵 )  =  ( ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ↑ 𝐵 ) ) | 
						
							| 419 | 359 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 420 | 363 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℂ ) | 
						
							| 421 | 154 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 422 | 419 420 421 | mulexpd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ↑ 𝐵 )  =  ( ( 𝑃 ↑ 𝐵 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) ) ) | 
						
							| 423 | 418 422 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝐵 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) )  =  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 424 | 374 | leidd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑁 ↑ 𝐵 )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 425 | 423 424 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝐵 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝐵 ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 426 | 365 371 374 412 425 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( ( 𝑃 ↑ 𝑟 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑜 ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 427 | 106 426 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  →  ( 𝑟 𝐸 𝑜 )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 428 | 427 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  ( 𝑟 𝐸 𝑜 )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 429 | 92 428 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 ... 𝐵 ) )  ∧  𝑜  ∈  ( 0 ... 𝐵 ) )  ∧  𝐽  =  ( 𝑟 𝐸 𝑜 ) )  →  𝐽  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 430 | 429 171 | r19.29vva | ⊢ ( 𝜑  →  𝐽  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 431 | 324 430 | eqbrtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽  ↑  𝑋 ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 432 | 327 431 | eqbrtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽  ↑  𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼  ↑  𝑋 ) ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 433 | 312 432 | eqbrtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 434 | 349 355 351 337 433 | letrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 435 | 348 349 351 343 434 | letrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) |