| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c2.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
| 2 |
|
aks6d1c2.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 3 |
|
aks6d1c2.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 4 |
|
aks6d1c2.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
aks6d1c2.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 6 |
|
aks6d1c2.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
aks6d1c2.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 8 |
|
aks6d1c2.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 9 |
|
aks6d1c2.9 |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 10 |
|
aks6d1c2.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 11 |
|
aks6d1c2.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 12 |
|
aks6d1c2.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 13 |
|
aks6d1c2.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 14 |
|
aks6d1c2.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 15 |
|
aks6d1c2.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 16 |
|
aks6d1c2.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 17 |
|
aks6d1c2.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
| 18 |
|
aks6d1c2.18 |
⊢ 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 19 |
|
aks6d1c2.19 |
⊢ 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
| 20 |
|
aks6d1c2.20 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐶 ) |
| 21 |
|
aks6d1c2.21 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐶 ) |
| 22 |
|
aks6d1c2.22 |
⊢ ( 𝜑 → 𝐼 < 𝐽 ) |
| 23 |
|
aks6d1c2.23 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 24 |
|
aks6d1c2.24 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
| 25 |
|
aks6d1c2.25 |
⊢ 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) |
| 26 |
|
aks6d1c2.26 |
⊢ ( 𝜑 → 𝑈 ∈ ℕ ) |
| 27 |
|
aks6d1c2.27 |
⊢ ( 𝜑 → 𝐽 = ( 𝐼 + ( 𝑈 · 𝑅 ) ) ) |
| 28 |
|
fvexd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V ) |
| 29 |
|
cnvexg |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V → ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V ) |
| 31 |
30
|
imaexd |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
| 33 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ∈ V ) |
| 34 |
33 17
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ V ) |
| 35 |
34
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 36 |
35
|
fnfund |
⊢ ( 𝜑 → Fun 𝐻 ) |
| 37 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ) |
| 39 |
38
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
| 40 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
| 41 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
| 42 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 43 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 44 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ CRing ) |
| 46 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
| 47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ℎ = 𝑠 ) |
| 48 |
47
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ( 𝐺 ‘ ℎ ) = ( 𝐺 ‘ 𝑠 ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
| 50 |
49
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) |
| 51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 52 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ∈ V ) |
| 53 |
46 50 51 52
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) |
| 54 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
| 55 |
54
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
| 56 |
44 55
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
| 57 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| 58 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 59 |
56 57 58
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
| 60 |
59
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
| 61 |
16 60
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) |
| 62 |
61
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 63 |
54 42
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 64 |
62 63
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
| 66 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Field ) |
| 67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑃 ∈ ℙ ) |
| 68 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑅 ∈ ℕ ) |
| 69 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑁 ∈ ℕ ) |
| 70 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑃 ∥ 𝑁 ) |
| 71 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 72 |
|
elmapi |
⊢ ( 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 74 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 75 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 0 ∈ ℕ0 ) |
| 77 |
|
eqid |
⊢ ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) = ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) |
| 78 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 79 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 80 |
1 2 66 67 68 69 70 71 73 10 74 76 76 77 78 79
|
aks6d1c1rh |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) ∼ ( 𝐺 ‘ 𝑠 ) ) |
| 81 |
1 80
|
aks6d1c1p1rcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) ∈ ℕ ∧ ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 82 |
81
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 83 |
40 41 42 43 45 65 82
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ∈ ( Base ‘ 𝐾 ) ) |
| 84 |
53 83
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) |
| 85 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 86 |
41
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 87 |
44 86
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 88 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
| 89 |
88
|
crngmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
| 90 |
87 89
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
| 91 |
90
|
cmnmndd |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
| 92 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
| 93 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
| 94 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → 𝑘 = 𝑟 ) |
| 95 |
94
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑟 ) ) |
| 96 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → 𝑙 = 𝑜 ) |
| 97 |
96
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) |
| 98 |
95 97
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
| 99 |
|
fz0ssnn0 |
⊢ ( 0 ... 𝐵 ) ⊆ ℕ0 |
| 100 |
99
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ⊆ ℕ0 ) |
| 101 |
100
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑟 ∈ ℕ0 ) |
| 102 |
101
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑟 ∈ ℕ0 ) |
| 103 |
99
|
sseli |
⊢ ( 𝑜 ∈ ( 0 ... 𝐵 ) → 𝑜 ∈ ℕ0 ) |
| 104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑜 ∈ ℕ0 ) |
| 105 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ V ) |
| 106 |
93 98 102 104 105
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑟 𝐸 𝑜 ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
| 107 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 108 |
4 107
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 109 |
108
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℕ0 ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℕ0 ) |
| 112 |
111 102
|
nn0expcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝑟 ) ∈ ℕ0 ) |
| 113 |
109
|
nn0zd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 114 |
108
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 115 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 116 |
115
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 117 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 118 |
113 114 116 117
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 119 |
7 118
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 120 |
6
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 121 |
108
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
| 122 |
115
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 123 |
120 121 122
|
divge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 / 𝑃 ) ) |
| 124 |
119 123
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 𝑃 ) ) ) |
| 125 |
|
elnn0z |
⊢ ( ( 𝑁 / 𝑃 ) ∈ ℕ0 ↔ ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 𝑃 ) ) ) |
| 126 |
124 125
|
sylibr |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
| 128 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
| 129 |
128 104
|
nn0expcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ∈ ℕ0 ) |
| 130 |
112 129
|
nn0mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ ℕ0 ) |
| 131 |
106 130
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑟 𝐸 𝑜 ) ∈ ℕ0 ) |
| 132 |
131
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ( 𝑟 𝐸 𝑜 ) ∈ ℕ0 ) |
| 133 |
92 132
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → 𝐽 ∈ ℕ0 ) |
| 134 |
19
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 135 |
21 134
|
eleqtrd |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 136 |
6 4 7 12
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
| 137 |
136
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 138 |
100 100
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) |
| 139 |
18
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 140 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
| 141 |
6 4 7 5 8 12 13 140
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 142 |
141
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 143 |
141
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 144 |
142 143
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
| 145 |
144
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ) |
| 146 |
142 143
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 147 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 148 |
|
flge |
⊢ ( ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 149 |
144 147 148
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 150 |
146 149
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 151 |
145 150
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 152 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 153 |
151 152
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ) |
| 154 |
139 153
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 155 |
|
elnn0z |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
| 156 |
154 155
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
| 157 |
|
0z |
⊢ 0 ∈ ℤ |
| 158 |
|
eluz1 |
⊢ ( 0 ∈ ℤ → ( 𝐵 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) ) |
| 159 |
157 158
|
ax-mp |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
| 160 |
156 159
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ( ℤ≥ ‘ 0 ) ) |
| 161 |
|
fzn0 |
⊢ ( ( 0 ... 𝐵 ) ≠ ∅ ↔ 𝐵 ∈ ( ℤ≥ ‘ 0 ) ) |
| 162 |
160 161
|
sylibr |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ≠ ∅ ) |
| 163 |
162 162
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) ) |
| 164 |
|
xpnz |
⊢ ( ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) ↔ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
| 165 |
163 164
|
sylib |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
| 166 |
|
ssxpb |
⊢ ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ → ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ↔ ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) ) |
| 167 |
165 166
|
syl |
⊢ ( 𝜑 → ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ↔ ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) ) |
| 168 |
138 167
|
mpbird |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) |
| 169 |
|
ovelimab |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) → ( 𝐽 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ) |
| 170 |
137 168 169
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ) |
| 171 |
135 170
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
| 172 |
133 171
|
r19.29vva |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
| 173 |
44
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 174 |
24 41 43
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 175 |
173 174
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 176 |
88 43
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 177 |
176
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 178 |
177
|
eleq2i |
⊢ ( 𝑋 ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ↔ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 179 |
175 178
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 180 |
85 23 91 172 179
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 181 |
180 176
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 183 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 184 |
40 24 42 41 43 45 84
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐻 ‘ 𝑠 ) ) ) |
| 185 |
184
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐻 ‘ 𝑠 ) ) |
| 186 |
183 185
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐻 ‘ 𝑠 ) ) ) |
| 187 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐽 ∈ ℕ0 ) |
| 188 |
40 41 42 43 45 84 186 23 58 187
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) ) |
| 189 |
188
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
| 190 |
53
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
| 191 |
3
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐾 ∈ Field ) |
| 192 |
4
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑃 ∈ ℙ ) |
| 193 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑅 ∈ ℕ ) |
| 194 |
6
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑁 ∈ ℕ ) |
| 195 |
7
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑃 ∥ 𝑁 ) |
| 196 |
8
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 197 |
9
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 198 |
11
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐴 ∈ ℕ0 ) |
| 199 |
14
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 200 |
15
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 201 |
16
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 202 |
20
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 ∈ 𝐶 ) |
| 203 |
21
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐽 ∈ 𝐶 ) |
| 204 |
22
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 < 𝐽 ) |
| 205 |
26
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑈 ∈ ℕ ) |
| 206 |
27
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐽 = ( 𝐼 + ( 𝑈 · 𝑅 ) ) ) |
| 207 |
51
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 208 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑟 ∈ ( 0 ... 𝐵 ) ) |
| 209 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑜 ∈ ( 0 ... 𝐵 ) ) |
| 210 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
| 211 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑝 ∈ ( 0 ... 𝐵 ) ) |
| 212 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑞 ∈ ( 0 ... 𝐵 ) ) |
| 213 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
| 214 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
| 215 |
12
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
| 216 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → 𝑘 = 𝑝 ) |
| 217 |
216
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑝 ) ) |
| 218 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → 𝑙 = 𝑞 ) |
| 219 |
218
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) |
| 220 |
217 219
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
| 221 |
100
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) → 𝑝 ∈ ℕ0 ) |
| 222 |
221
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) → 𝑝 ∈ ℕ0 ) |
| 223 |
222
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑝 ∈ ℕ0 ) |
| 224 |
99
|
sseli |
⊢ ( 𝑞 ∈ ( 0 ... 𝐵 ) → 𝑞 ∈ ℕ0 ) |
| 225 |
224
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) → 𝑞 ∈ ℕ0 ) |
| 226 |
225
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑞 ∈ ℕ0 ) |
| 227 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ V ) |
| 228 |
215 220 223 226 227
|
ovmpod |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑝 𝐸 𝑞 ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
| 229 |
214 228
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
| 230 |
109
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑃 ∈ ℕ0 ) |
| 231 |
230 223
|
nn0expcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑃 ↑ 𝑝 ) ∈ ℕ0 ) |
| 232 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
| 233 |
232
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
| 234 |
233 226
|
nn0expcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ∈ ℕ0 ) |
| 235 |
231 234
|
nn0mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ ℕ0 ) |
| 236 |
229 235
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 ∈ ℕ0 ) |
| 237 |
20 134
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
| 238 |
|
ovelimab |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) → ( 𝐼 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ) |
| 239 |
137 168 238
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ) |
| 240 |
237 239
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
| 241 |
236 240
|
r19.29vva |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
| 242 |
241
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐼 ∈ ℕ0 ) |
| 243 |
242
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 ∈ ℕ0 ) |
| 244 |
1 2 191 192 193 194 195 196 197 10 198 12 13 199 200 201 17 18 19 202 203 204 23 24 25 205 206 207 208 209 210 211 212 213 243
|
aks6d1c2lem3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
| 245 |
240
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
| 246 |
244 245
|
r19.29vva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
| 247 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
| 248 |
246 247
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
| 249 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) = ( 𝐻 ‘ 𝑠 ) ) |
| 250 |
249
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
| 251 |
190 248 250
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
| 252 |
40 41 42 43 45 84 186 23 58 242
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) ) |
| 253 |
252
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
| 254 |
253
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
| 255 |
189 251 254
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
| 256 |
182 255
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) |
| 257 |
85 23 91 241 179
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 258 |
176
|
eleq2i |
⊢ ( ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 259 |
257 258
|
sylibr |
⊢ ( 𝜑 → ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 260 |
259
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 261 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
| 262 |
260 261
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) |
| 263 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) ) = ( -g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 264 |
|
eqid |
⊢ ( -g ‘ 𝐾 ) = ( -g ‘ 𝐾 ) |
| 265 |
40 41 42 43 45 84 256 262 263 264
|
evl1subd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) ) |
| 266 |
265
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) |
| 267 |
45
|
crnggrpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Grp ) |
| 268 |
40 41 42 43 45 84 260
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 269 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 270 |
42 269 264
|
grpsubid |
⊢ ( ( 𝐾 ∈ Grp ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 271 |
267 268 270
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 272 |
266 271
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) |
| 273 |
39 272
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) |
| 274 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ V ) |
| 275 |
|
elsng |
⊢ ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ V → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 276 |
274 275
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 277 |
273 276
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ) |
| 278 |
87
|
crnggrpd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
| 279 |
43 263
|
grpsubcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 280 |
278 181 259 279
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 281 |
25 280
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 282 |
|
eqid |
⊢ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) = ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) |
| 283 |
40 41 282 42
|
evl1rhm |
⊢ ( 𝐾 ∈ CRing → ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 284 |
44 283
|
syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 285 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) |
| 286 |
43 285
|
rhmf |
⊢ ( ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 287 |
284 286
|
syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 288 |
287
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 289 |
288
|
ex |
⊢ ( 𝜑 → ( 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) ) |
| 290 |
281 289
|
mpd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 291 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ V ) |
| 292 |
282 42
|
pwsbas |
⊢ ( ( 𝐾 ∈ Field ∧ ( Base ‘ 𝐾 ) ∈ V ) → ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 293 |
3 291 292
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
| 294 |
290 293
|
eleqtrrd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ) |
| 295 |
291 291
|
elmapd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ↔ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
| 296 |
294 295
|
mpbid |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 297 |
|
ffn |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) ) |
| 298 |
296 297
|
syl |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) ) |
| 299 |
298
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) ) |
| 300 |
|
fnfun |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) → Fun ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 301 |
299 300
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → Fun ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 302 |
|
fndm |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) → dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( Base ‘ 𝐾 ) ) |
| 303 |
298 302
|
syl |
⊢ ( 𝜑 → dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( Base ‘ 𝐾 ) ) |
| 304 |
303
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( Base ‘ 𝐾 ) ) |
| 305 |
84 304
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 306 |
|
fvimacnv |
⊢ ( ( Fun ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∧ ( 𝐻 ‘ 𝑠 ) ∈ dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( 𝐻 ‘ 𝑠 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 307 |
301 305 306
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( 𝐻 ‘ 𝑠 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 308 |
277 307
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) |
| 309 |
32 36 308
|
funimassd |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ⊆ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) |
| 310 |
31 309
|
ssexd |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ) |
| 311 |
25
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) |
| 312 |
311
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ) |
| 313 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
| 314 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
| 315 |
314
|
biimpi |
⊢ ( 𝐾 ∈ Field → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
| 316 |
315
|
simpld |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ DivRing ) |
| 317 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
| 318 |
316 317
|
syl |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ NzRing ) |
| 319 |
3 318
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
| 320 |
313 41 24 88 23
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 𝐼 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) = 𝐼 ) |
| 321 |
319 241 320
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) = 𝐼 ) |
| 322 |
321
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ) |
| 323 |
313 41 24 88 23
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 𝐽 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) = 𝐽 ) |
| 324 |
319 172 323
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) = 𝐽 ) |
| 325 |
324
|
eqcomd |
⊢ ( 𝜑 → 𝐽 = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
| 326 |
22 322 325
|
3brtr3d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
| 327 |
41 313 173 43 263 181 259 326
|
deg1sub |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
| 328 |
312 327
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
| 329 |
328 324
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) = 𝐽 ) |
| 330 |
329 172
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ) |
| 331 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 332 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
| 333 |
3 332
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
| 334 |
313 41 331 43
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑆 ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ) ) |
| 335 |
173 281 334
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ) ) |
| 336 |
330 335
|
mpbird |
⊢ ( 𝜑 → 𝑆 ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 337 |
41 43 313 40 269 331 333 281 336
|
fta1g |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 338 |
|
hashbnd |
⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ∧ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ) → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ Fin ) |
| 339 |
31 330 337 338
|
syl3anc |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ Fin ) |
| 340 |
|
hashcl |
⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ Fin → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0 ) |
| 341 |
339 340
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0 ) |
| 342 |
|
hashss |
⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ∧ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ⊆ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 343 |
31 309 342
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 344 |
|
hashbnd |
⊢ ( ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ∧ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ Fin ) |
| 345 |
310 341 343 344
|
syl3anc |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ Fin ) |
| 346 |
|
hashcl |
⊢ ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0 ) |
| 347 |
345 346
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0 ) |
| 348 |
347
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ ) |
| 349 |
341
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ ) |
| 350 |
115 154
|
nn0expcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℕ0 ) |
| 351 |
350
|
nn0red |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
| 352 |
172
|
nn0red |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
| 353 |
324 352
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ∈ ℝ ) |
| 354 |
327 353
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ∈ ℝ ) |
| 355 |
312 354
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℝ ) |
| 356 |
107
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 357 |
4 356
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 358 |
357
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℝ ) |
| 359 |
358
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℝ ) |
| 360 |
359 102
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝑟 ) ∈ ℝ ) |
| 361 |
120 357 114
|
redivcld |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℝ ) |
| 362 |
361
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℝ ) |
| 363 |
362
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℝ ) |
| 364 |
363 104
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ∈ ℝ ) |
| 365 |
360 364
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ ℝ ) |
| 366 |
357 154
|
reexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐵 ) ∈ ℝ ) |
| 367 |
366
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝐵 ) ∈ ℝ ) |
| 368 |
361 154
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ∈ ℝ ) |
| 369 |
368
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ∈ ℝ ) |
| 370 |
367 369
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ∈ ℝ ) |
| 371 |
370
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ∈ ℝ ) |
| 372 |
120 154
|
reexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
| 373 |
372
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
| 374 |
373
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
| 375 |
367
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝐵 ) ∈ ℝ ) |
| 376 |
369
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ∈ ℝ ) |
| 377 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 378 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 379 |
|
0le1 |
⊢ 0 ≤ 1 |
| 380 |
379
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 381 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
| 382 |
4 381
|
syl |
⊢ ( 𝜑 → 1 < 𝑃 ) |
| 383 |
378 357 382
|
ltled |
⊢ ( 𝜑 → 1 ≤ 𝑃 ) |
| 384 |
377 378 357 380 383
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑃 ) |
| 385 |
384
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ 𝑃 ) |
| 386 |
385
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ 𝑃 ) |
| 387 |
359 102 386
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝑃 ↑ 𝑟 ) ) |
| 388 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝑁 / 𝑃 ) ) |
| 389 |
388
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝑁 / 𝑃 ) ) |
| 390 |
363 104 389
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) |
| 391 |
108
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑃 ) |
| 392 |
391
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ 𝑃 ) |
| 393 |
392
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ 𝑃 ) |
| 394 |
|
elfzuz3 |
⊢ ( 𝑟 ∈ ( 0 ... 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑟 ) ) |
| 395 |
394
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑟 ) ) |
| 396 |
395
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑟 ) ) |
| 397 |
359 393 396
|
leexp2ad |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝑟 ) ≤ ( 𝑃 ↑ 𝐵 ) ) |
| 398 |
357
|
recnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 399 |
398
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑃 ) = 𝑃 ) |
| 400 |
108
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 401 |
|
dvdsle |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁 ) ) |
| 402 |
400 6 401
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁 ) ) |
| 403 |
7 402
|
mpd |
⊢ ( 𝜑 → 𝑃 ≤ 𝑁 ) |
| 404 |
399 403
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 · 𝑃 ) ≤ 𝑁 ) |
| 405 |
378 120 121
|
lemuldivd |
⊢ ( 𝜑 → ( ( 1 · 𝑃 ) ≤ 𝑁 ↔ 1 ≤ ( 𝑁 / 𝑃 ) ) ) |
| 406 |
404 405
|
mpbid |
⊢ ( 𝜑 → 1 ≤ ( 𝑁 / 𝑃 ) ) |
| 407 |
406
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ ( 𝑁 / 𝑃 ) ) |
| 408 |
407
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ ( 𝑁 / 𝑃 ) ) |
| 409 |
|
elfzuz3 |
⊢ ( 𝑜 ∈ ( 0 ... 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑜 ) ) |
| 410 |
409
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑜 ) ) |
| 411 |
363 408 410
|
leexp2ad |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ≤ ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) |
| 412 |
360 375 364 376 387 390 397 411
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ≤ ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ) |
| 413 |
120
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 414 |
413 398 114
|
divcan2d |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 ) |
| 415 |
414
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
| 416 |
415
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
| 417 |
416
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
| 418 |
417
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) = ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝐵 ) ) |
| 419 |
359
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℂ ) |
| 420 |
363
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℂ ) |
| 421 |
154
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ℕ0 ) |
| 422 |
419 420 421
|
mulexpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝐵 ) = ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ) |
| 423 |
418 422
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) = ( 𝑁 ↑ 𝐵 ) ) |
| 424 |
374
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 425 |
423 424
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 426 |
365 371 374 412 425
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 427 |
106 426
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑟 𝐸 𝑜 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 428 |
427
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ( 𝑟 𝐸 𝑜 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 429 |
92 428
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → 𝐽 ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 430 |
429 171
|
r19.29vva |
⊢ ( 𝜑 → 𝐽 ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 431 |
324 430
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 432 |
327 431
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 433 |
312 432
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 434 |
349 355 351 337 433
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 435 |
348 349 351 343 434
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |