Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c2.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c2.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c2.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c2.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c2.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c2.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c2.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c2.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c2.9 |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
10 |
|
aks6d1c2.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c2.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
12 |
|
aks6d1c2.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c2.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c2.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c2.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c2.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c2.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c2.18 |
⊢ 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
19 |
|
aks6d1c2.19 |
⊢ 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
20 |
|
aks6d1c2.20 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐶 ) |
21 |
|
aks6d1c2.21 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐶 ) |
22 |
|
aks6d1c2.22 |
⊢ ( 𝜑 → 𝐼 < 𝐽 ) |
23 |
|
aks6d1c2.23 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
24 |
|
aks6d1c2.24 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
25 |
|
aks6d1c2.25 |
⊢ 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) |
26 |
|
aks6d1c2.26 |
⊢ ( 𝜑 → 𝑈 ∈ ℕ ) |
27 |
|
aks6d1c2.27 |
⊢ ( 𝜑 → 𝐽 = ( 𝐼 + ( 𝑈 · 𝑅 ) ) ) |
28 |
|
fvexd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V ) |
29 |
|
cnvexg |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V → ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ V ) |
31 |
30
|
imaexd |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
32 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
33 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ∈ V ) |
34 |
33 17
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ V ) |
35 |
34
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
36 |
35
|
fnfund |
⊢ ( 𝜑 → Fun 𝐻 ) |
37 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ) |
39 |
38
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
40 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
41 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
42 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
43 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
44 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ CRing ) |
46 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ℎ = 𝑠 ) |
48 |
47
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ( 𝐺 ‘ ℎ ) = ( 𝐺 ‘ 𝑠 ) ) |
49 |
48
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
50 |
49
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ℎ = 𝑠 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
52 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ∈ V ) |
53 |
46 50 51 52
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) |
54 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
55 |
54
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
56 |
44 55
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
57 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
58 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
59 |
56 57 58
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
60 |
59
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
61 |
16 60
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) |
62 |
61
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
63 |
54 42
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
64 |
62 63
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
66 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Field ) |
67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑃 ∈ ℙ ) |
68 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑅 ∈ ℕ ) |
69 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑁 ∈ ℕ ) |
70 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑃 ∥ 𝑁 ) |
71 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
72 |
|
elmapi |
⊢ ( 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑠 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
74 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐴 ∈ ℕ0 ) |
75 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 0 ∈ ℕ0 ) |
77 |
|
eqid |
⊢ ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) = ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) |
78 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
79 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
80 |
1 2 66 67 68 69 70 71 73 10 74 76 76 77 78 79
|
aks6d1c1rh |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) ∼ ( 𝐺 ‘ 𝑠 ) ) |
81 |
1 80
|
aks6d1c1p1rcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) ∈ ℕ ∧ ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
82 |
81
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
83 |
40 41 42 43 45 65 82
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ∈ ( Base ‘ 𝐾 ) ) |
84 |
53 83
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) |
85 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
86 |
41
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
87 |
44 86
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
88 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
89 |
88
|
crngmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
90 |
87 89
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
91 |
90
|
cmnmndd |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
92 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
93 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
94 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → 𝑘 = 𝑟 ) |
95 |
94
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑟 ) ) |
96 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → 𝑙 = 𝑜 ) |
97 |
96
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) |
98 |
95 97
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ ( 𝑘 = 𝑟 ∧ 𝑙 = 𝑜 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
99 |
|
fz0ssnn0 |
⊢ ( 0 ... 𝐵 ) ⊆ ℕ0 |
100 |
99
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ⊆ ℕ0 ) |
101 |
100
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑟 ∈ ℕ0 ) |
102 |
101
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑟 ∈ ℕ0 ) |
103 |
99
|
sseli |
⊢ ( 𝑜 ∈ ( 0 ... 𝐵 ) → 𝑜 ∈ ℕ0 ) |
104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑜 ∈ ℕ0 ) |
105 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ V ) |
106 |
93 98 102 104 105
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑟 𝐸 𝑜 ) = ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ) |
107 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
108 |
4 107
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
109 |
108
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℕ0 ) |
111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℕ0 ) |
112 |
111 102
|
nn0expcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝑟 ) ∈ ℕ0 ) |
113 |
109
|
nn0zd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
114 |
108
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
115 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
116 |
115
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
117 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
118 |
113 114 116 117
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
119 |
7 118
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
120 |
6
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
121 |
108
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
122 |
115
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
123 |
120 121 122
|
divge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 / 𝑃 ) ) |
124 |
119 123
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 𝑃 ) ) ) |
125 |
|
elnn0z |
⊢ ( ( 𝑁 / 𝑃 ) ∈ ℕ0 ↔ ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 𝑃 ) ) ) |
126 |
124 125
|
sylibr |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
128 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
129 |
128 104
|
nn0expcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ∈ ℕ0 ) |
130 |
112 129
|
nn0mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ ℕ0 ) |
131 |
106 130
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑟 𝐸 𝑜 ) ∈ ℕ0 ) |
132 |
131
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ( 𝑟 𝐸 𝑜 ) ∈ ℕ0 ) |
133 |
92 132
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → 𝐽 ∈ ℕ0 ) |
134 |
19
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
135 |
21 134
|
eleqtrd |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
136 |
6 4 7 12
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
137 |
136
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
138 |
100 100
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) |
139 |
18
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
140 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
141 |
6 4 7 5 8 12 13 140
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
142 |
141
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
143 |
141
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
144 |
142 143
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
145 |
144
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ) |
146 |
142 143
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
147 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
148 |
|
flge |
⊢ ( ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
149 |
144 147 148
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
150 |
146 149
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
151 |
145 150
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
152 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
153 |
151 152
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ) |
154 |
139 153
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
155 |
|
elnn0z |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
156 |
154 155
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
157 |
|
0z |
⊢ 0 ∈ ℤ |
158 |
|
eluz1 |
⊢ ( 0 ∈ ℤ → ( 𝐵 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) ) |
159 |
157 158
|
ax-mp |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
160 |
156 159
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ( ℤ≥ ‘ 0 ) ) |
161 |
|
fzn0 |
⊢ ( ( 0 ... 𝐵 ) ≠ ∅ ↔ 𝐵 ∈ ( ℤ≥ ‘ 0 ) ) |
162 |
160 161
|
sylibr |
⊢ ( 𝜑 → ( 0 ... 𝐵 ) ≠ ∅ ) |
163 |
162 162
|
jca |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) ) |
164 |
|
xpnz |
⊢ ( ( ( 0 ... 𝐵 ) ≠ ∅ ∧ ( 0 ... 𝐵 ) ≠ ∅ ) ↔ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
165 |
163 164
|
sylib |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ ) |
166 |
|
ssxpb |
⊢ ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ≠ ∅ → ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ↔ ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) ) |
167 |
165 166
|
syl |
⊢ ( 𝜑 → ( ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ↔ ( ( 0 ... 𝐵 ) ⊆ ℕ0 ∧ ( 0 ... 𝐵 ) ⊆ ℕ0 ) ) ) |
168 |
138 167
|
mpbird |
⊢ ( 𝜑 → ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) |
169 |
|
ovelimab |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) → ( 𝐽 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ) |
170 |
137 168 169
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ) |
171 |
135 170
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
172 |
133 171
|
r19.29vva |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
173 |
44
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
174 |
24 41 43
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
175 |
173 174
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
176 |
88 43
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
177 |
176
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
178 |
177
|
eleq2i |
⊢ ( 𝑋 ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ↔ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
179 |
175 178
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
180 |
85 23 91 172 179
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
181 |
180 176
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
183 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
184 |
40 24 42 41 43 45 84
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐻 ‘ 𝑠 ) ) ) |
185 |
184
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐻 ‘ 𝑠 ) ) |
186 |
183 185
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐻 ‘ 𝑠 ) ) ) |
187 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐽 ∈ ℕ0 ) |
188 |
40 41 42 43 45 84 186 23 58 187
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) ) |
189 |
188
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
190 |
53
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) = ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
191 |
3
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐾 ∈ Field ) |
192 |
4
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑃 ∈ ℙ ) |
193 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑅 ∈ ℕ ) |
194 |
6
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑁 ∈ ℕ ) |
195 |
7
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑃 ∥ 𝑁 ) |
196 |
8
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
197 |
9
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
198 |
11
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐴 ∈ ℕ0 ) |
199 |
14
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
200 |
15
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
201 |
16
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
202 |
20
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 ∈ 𝐶 ) |
203 |
21
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐽 ∈ 𝐶 ) |
204 |
22
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 < 𝐽 ) |
205 |
26
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑈 ∈ ℕ ) |
206 |
27
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐽 = ( 𝐼 + ( 𝑈 · 𝑅 ) ) ) |
207 |
51
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
208 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑟 ∈ ( 0 ... 𝐵 ) ) |
209 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑜 ∈ ( 0 ... 𝐵 ) ) |
210 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
211 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑝 ∈ ( 0 ... 𝐵 ) ) |
212 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑞 ∈ ( 0 ... 𝐵 ) ) |
213 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
214 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
215 |
12
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
216 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → 𝑘 = 𝑝 ) |
217 |
216
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑝 ) ) |
218 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → 𝑙 = 𝑞 ) |
219 |
218
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) |
220 |
217 219
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ∧ ( 𝑘 = 𝑝 ∧ 𝑙 = 𝑞 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
221 |
100
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) → 𝑝 ∈ ℕ0 ) |
222 |
221
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) → 𝑝 ∈ ℕ0 ) |
223 |
222
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑝 ∈ ℕ0 ) |
224 |
99
|
sseli |
⊢ ( 𝑞 ∈ ( 0 ... 𝐵 ) → 𝑞 ∈ ℕ0 ) |
225 |
224
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) → 𝑞 ∈ ℕ0 ) |
226 |
225
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑞 ∈ ℕ0 ) |
227 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ V ) |
228 |
215 220 223 226 227
|
ovmpod |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑝 𝐸 𝑞 ) = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
229 |
214 228
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 = ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ) |
230 |
109
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝑃 ∈ ℕ0 ) |
231 |
230 223
|
nn0expcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑃 ↑ 𝑝 ) ∈ ℕ0 ) |
232 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
233 |
232
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
234 |
233 226
|
nn0expcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ∈ ℕ0 ) |
235 |
231 234
|
nn0mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( ( 𝑃 ↑ 𝑝 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑞 ) ) ∈ ℕ0 ) |
236 |
229 235
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 ∈ ℕ0 ) |
237 |
20 134
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ) |
238 |
|
ovelimab |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ⊆ ( ℕ0 × ℕ0 ) ) → ( 𝐼 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ) |
239 |
137 168 238
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) ↔ ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) ) |
240 |
237 239
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
241 |
236 240
|
r19.29vva |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
242 |
241
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐼 ∈ ℕ0 ) |
243 |
242
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → 𝐼 ∈ ℕ0 ) |
244 |
1 2 191 192 193 194 195 196 197 10 198 12 13 199 200 201 17 18 19 202 203 204 23 24 25 205 206 207 208 209 210 211 212 213 243
|
aks6d1c2lem3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) ∧ 𝑝 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑞 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐼 = ( 𝑝 𝐸 𝑞 ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
245 |
240
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ∃ 𝑝 ∈ ( 0 ... 𝐵 ) ∃ 𝑞 ∈ ( 0 ... 𝐵 ) 𝐼 = ( 𝑝 𝐸 𝑞 ) ) |
246 |
244 245
|
r19.29vva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
247 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∃ 𝑟 ∈ ( 0 ... 𝐵 ) ∃ 𝑜 ∈ ( 0 ... 𝐵 ) 𝐽 = ( 𝑟 𝐸 𝑜 ) ) |
248 |
246 247
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) ) |
249 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) = ( 𝐻 ‘ 𝑠 ) ) |
250 |
249
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑠 ) ) ‘ 𝑀 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
251 |
190 248 250
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐽 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
252 |
40 41 42 43 45 84 186 23 58 242
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) ) |
253 |
252
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) ) |
254 |
253
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐼 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
255 |
189 251 254
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
256 |
182 255
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) |
257 |
85 23 91 241 179
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
258 |
176
|
eleq2i |
⊢ ( ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
259 |
257 258
|
sylibr |
⊢ ( 𝜑 → ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
260 |
259
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
261 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
262 |
260 261
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) |
263 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) ) = ( -g ‘ ( Poly1 ‘ 𝐾 ) ) |
264 |
|
eqid |
⊢ ( -g ‘ 𝐾 ) = ( -g ‘ 𝐾 ) |
265 |
40 41 42 43 45 84 256 262 263 264
|
evl1subd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) ) |
266 |
265
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) ) |
267 |
45
|
crnggrpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Grp ) |
268 |
40 41 42 43 45 84 260
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝐾 ) ) |
269 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
270 |
42 269 264
|
grpsubid |
⊢ ( ( 𝐾 ∈ Grp ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) = ( 0g ‘ 𝐾 ) ) |
271 |
267 268 270
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) ) = ( 0g ‘ 𝐾 ) ) |
272 |
266 271
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) |
273 |
39 272
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) |
274 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ V ) |
275 |
|
elsng |
⊢ ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ V → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) ) |
276 |
274 275
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) = ( 0g ‘ 𝐾 ) ) ) |
277 |
273 276
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ) |
278 |
87
|
crnggrpd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
279 |
43 263
|
grpsubcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐽 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐼 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
280 |
278 181 259 279
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
281 |
25 280
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
282 |
|
eqid |
⊢ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) = ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) |
283 |
40 41 282 42
|
evl1rhm |
⊢ ( 𝐾 ∈ CRing → ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
284 |
44 283
|
syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
285 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) |
286 |
43 285
|
rhmf |
⊢ ( ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
287 |
284 286
|
syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
288 |
287
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
289 |
288
|
ex |
⊢ ( 𝜑 → ( 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) ) |
290 |
281 289
|
mpd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
291 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ V ) |
292 |
282 42
|
pwsbas |
⊢ ( ( 𝐾 ∈ Field ∧ ( Base ‘ 𝐾 ) ∈ V ) → ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
293 |
3 291 292
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
294 |
290 293
|
eleqtrrd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ) |
295 |
291 291
|
elmapd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ↔ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
296 |
294 295
|
mpbid |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
297 |
|
ffn |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) ) |
298 |
296 297
|
syl |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) ) |
299 |
298
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) ) |
300 |
|
fnfun |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) → Fun ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
301 |
299 300
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → Fun ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
302 |
|
fndm |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) Fn ( Base ‘ 𝐾 ) → dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( Base ‘ 𝐾 ) ) |
303 |
298 302
|
syl |
⊢ ( 𝜑 → dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( Base ‘ 𝐾 ) ) |
304 |
303
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) = ( Base ‘ 𝐾 ) ) |
305 |
84 304
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
306 |
|
fvimacnv |
⊢ ( ( Fun ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ∧ ( 𝐻 ‘ 𝑠 ) ∈ dom ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( 𝐻 ‘ 𝑠 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
307 |
301 305 306
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( 𝐻 ‘ 𝑠 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
308 |
277 307
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) |
309 |
32 36 308
|
funimassd |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ⊆ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) |
310 |
31 309
|
ssexd |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ) |
311 |
25
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) |
312 |
311
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ) |
313 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
314 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
315 |
314
|
biimpi |
⊢ ( 𝐾 ∈ Field → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
316 |
315
|
simpld |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ DivRing ) |
317 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
318 |
316 317
|
syl |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ NzRing ) |
319 |
3 318
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
320 |
313 41 24 88 23
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 𝐼 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) = 𝐼 ) |
321 |
319 241 320
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) = 𝐼 ) |
322 |
321
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) ) |
323 |
313 41 24 88 23
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 𝐽 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) = 𝐽 ) |
324 |
319 172 323
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) = 𝐽 ) |
325 |
324
|
eqcomd |
⊢ ( 𝜑 → 𝐽 = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
326 |
22 322 325
|
3brtr3d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐼 ↑ 𝑋 ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
327 |
41 313 173 43 263 181 259 326
|
deg1sub |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
328 |
312 327
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ) |
329 |
328 324
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) = 𝐽 ) |
330 |
329 172
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ) |
331 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) |
332 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
333 |
3 332
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
334 |
313 41 331 43
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑆 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑆 ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ) ) |
335 |
173 281 334
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ) ) |
336 |
330 335
|
mpbird |
⊢ ( 𝜑 → 𝑆 ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
337 |
41 43 313 40 269 331 333 281 336
|
fta1g |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ) |
338 |
|
hashbnd |
⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ∧ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ) → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ Fin ) |
339 |
31 330 337 338
|
syl3anc |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ Fin ) |
340 |
|
hashcl |
⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ Fin → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0 ) |
341 |
339 340
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0 ) |
342 |
|
hashss |
⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ∧ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ⊆ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
343 |
31 309 342
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
344 |
|
hashbnd |
⊢ ( ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ∧ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ) → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ Fin ) |
345 |
310 341 343 344
|
syl3anc |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ Fin ) |
346 |
|
hashcl |
⊢ ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0 ) |
347 |
345 346
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0 ) |
348 |
347
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ ) |
349 |
341
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ ) |
350 |
115 154
|
nn0expcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℕ0 ) |
351 |
350
|
nn0red |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
352 |
172
|
nn0red |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
353 |
324 352
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ∈ ℝ ) |
354 |
327 353
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ∈ ℝ ) |
355 |
312 354
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ∈ ℝ ) |
356 |
107
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
357 |
4 356
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
358 |
357
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℝ ) |
359 |
358
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℝ ) |
360 |
359 102
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝑟 ) ∈ ℝ ) |
361 |
120 357 114
|
redivcld |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℝ ) |
362 |
361
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℝ ) |
363 |
362
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℝ ) |
364 |
363 104
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ∈ ℝ ) |
365 |
360 364
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ∈ ℝ ) |
366 |
357 154
|
reexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐵 ) ∈ ℝ ) |
367 |
366
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝐵 ) ∈ ℝ ) |
368 |
361 154
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ∈ ℝ ) |
369 |
368
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ∈ ℝ ) |
370 |
367 369
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ∈ ℝ ) |
371 |
370
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ∈ ℝ ) |
372 |
120 154
|
reexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
373 |
372
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
374 |
373
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
375 |
367
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝐵 ) ∈ ℝ ) |
376 |
369
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ∈ ℝ ) |
377 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
378 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
379 |
|
0le1 |
⊢ 0 ≤ 1 |
380 |
379
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
381 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
382 |
4 381
|
syl |
⊢ ( 𝜑 → 1 < 𝑃 ) |
383 |
378 357 382
|
ltled |
⊢ ( 𝜑 → 1 ≤ 𝑃 ) |
384 |
377 378 357 380 383
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑃 ) |
385 |
384
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ 𝑃 ) |
386 |
385
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ 𝑃 ) |
387 |
359 102 386
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝑃 ↑ 𝑟 ) ) |
388 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝑁 / 𝑃 ) ) |
389 |
388
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝑁 / 𝑃 ) ) |
390 |
363 104 389
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) |
391 |
108
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑃 ) |
392 |
391
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ 𝑃 ) |
393 |
392
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ 𝑃 ) |
394 |
|
elfzuz3 |
⊢ ( 𝑟 ∈ ( 0 ... 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑟 ) ) |
395 |
394
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑟 ) ) |
396 |
395
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑟 ) ) |
397 |
359 393 396
|
leexp2ad |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑃 ↑ 𝑟 ) ≤ ( 𝑃 ↑ 𝐵 ) ) |
398 |
357
|
recnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
399 |
398
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑃 ) = 𝑃 ) |
400 |
108
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
401 |
|
dvdsle |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁 ) ) |
402 |
400 6 401
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁 ) ) |
403 |
7 402
|
mpd |
⊢ ( 𝜑 → 𝑃 ≤ 𝑁 ) |
404 |
399 403
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 · 𝑃 ) ≤ 𝑁 ) |
405 |
378 120 121
|
lemuldivd |
⊢ ( 𝜑 → ( ( 1 · 𝑃 ) ≤ 𝑁 ↔ 1 ≤ ( 𝑁 / 𝑃 ) ) ) |
406 |
404 405
|
mpbid |
⊢ ( 𝜑 → 1 ≤ ( 𝑁 / 𝑃 ) ) |
407 |
406
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ ( 𝑁 / 𝑃 ) ) |
408 |
407
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 1 ≤ ( 𝑁 / 𝑃 ) ) |
409 |
|
elfzuz3 |
⊢ ( 𝑜 ∈ ( 0 ... 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑜 ) ) |
410 |
409
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝑜 ) ) |
411 |
363 408 410
|
leexp2ad |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ≤ ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) |
412 |
360 375 364 376 387 390 397 411
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ≤ ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ) |
413 |
120
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
414 |
413 398 114
|
divcan2d |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 ) |
415 |
414
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
416 |
415
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
417 |
416
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
418 |
417
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) = ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝐵 ) ) |
419 |
359
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝑃 ∈ ℂ ) |
420 |
363
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 / 𝑃 ) ∈ ℂ ) |
421 |
154
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ℕ0 ) |
422 |
419 420 421
|
mulexpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝐵 ) = ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ) |
423 |
418 422
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) = ( 𝑁 ↑ 𝐵 ) ) |
424 |
374
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑁 ↑ 𝐵 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
425 |
423 424
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝐵 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐵 ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
426 |
365 371 374 412 425
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝑃 ↑ 𝑟 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑜 ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
427 |
106 426
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) → ( 𝑟 𝐸 𝑜 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
428 |
427
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → ( 𝑟 𝐸 𝑜 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
429 |
92 428
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 ... 𝐵 ) ) ∧ 𝑜 ∈ ( 0 ... 𝐵 ) ) ∧ 𝐽 = ( 𝑟 𝐸 𝑜 ) ) → 𝐽 ≤ ( 𝑁 ↑ 𝐵 ) ) |
430 |
429 171
|
r19.29vva |
⊢ ( 𝜑 → 𝐽 ≤ ( 𝑁 ↑ 𝐵 ) ) |
431 |
324 430
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐽 ↑ 𝑋 ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
432 |
327 431
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐽 ↑ 𝑋 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐼 ↑ 𝑋 ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
433 |
312 432
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑆 ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
434 |
349 355 351 337 433
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ 𝑆 ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
435 |
348 349 351 343 434
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |