| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c2.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
| 2 |
|
aks6d1c2.2 |
|- P = ( chr ` K ) |
| 3 |
|
aks6d1c2.3 |
|- ( ph -> K e. Field ) |
| 4 |
|
aks6d1c2.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
aks6d1c2.5 |
|- ( ph -> R e. NN ) |
| 6 |
|
aks6d1c2.6 |
|- ( ph -> N e. NN ) |
| 7 |
|
aks6d1c2.7 |
|- ( ph -> P || N ) |
| 8 |
|
aks6d1c2.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 9 |
|
aks6d1c2.9 |
|- ( ph -> F : ( 0 ... A ) --> NN0 ) |
| 10 |
|
aks6d1c2.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 11 |
|
aks6d1c2.11 |
|- ( ph -> A e. NN0 ) |
| 12 |
|
aks6d1c2.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 13 |
|
aks6d1c2.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
| 14 |
|
aks6d1c2.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 15 |
|
aks6d1c2.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 16 |
|
aks6d1c2.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 17 |
|
aks6d1c2.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
| 18 |
|
aks6d1c2.18 |
|- B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
| 19 |
|
aks6d1c2.19 |
|- C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
| 20 |
|
aks6d1c2.20 |
|- ( ph -> I e. C ) |
| 21 |
|
aks6d1c2.21 |
|- ( ph -> J e. C ) |
| 22 |
|
aks6d1c2.22 |
|- ( ph -> I < J ) |
| 23 |
|
aks6d1c2.23 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 24 |
|
aks6d1c2.24 |
|- X = ( var1 ` K ) |
| 25 |
|
aks6d1c2.25 |
|- S = ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) |
| 26 |
|
aks6d1c2.26 |
|- ( ph -> U e. NN ) |
| 27 |
|
aks6d1c2.27 |
|- ( ph -> J = ( I + ( U x. R ) ) ) |
| 28 |
|
fvexd |
|- ( ph -> ( ( eval1 ` K ) ` S ) e. _V ) |
| 29 |
|
cnvexg |
|- ( ( ( eval1 ` K ) ` S ) e. _V -> `' ( ( eval1 ` K ) ` S ) e. _V ) |
| 30 |
28 29
|
syl |
|- ( ph -> `' ( ( eval1 ` K ) ` S ) e. _V ) |
| 31 |
30
|
imaexd |
|- ( ph -> ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) e. _V ) |
| 32 |
|
nfv |
|- F/ s ph |
| 33 |
|
fvexd |
|- ( ( ph /\ h e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) e. _V ) |
| 34 |
33 17
|
fmptd |
|- ( ph -> H : ( NN0 ^m ( 0 ... A ) ) --> _V ) |
| 35 |
34
|
ffnd |
|- ( ph -> H Fn ( NN0 ^m ( 0 ... A ) ) ) |
| 36 |
35
|
fnfund |
|- ( ph -> Fun H ) |
| 37 |
25
|
a1i |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> S = ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) |
| 38 |
37
|
fveq2d |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( eval1 ` K ) ` S ) = ( ( eval1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) ) |
| 39 |
38
|
fveq1d |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) = ( ( ( eval1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) ` ( H ` s ) ) ) |
| 40 |
|
eqid |
|- ( eval1 ` K ) = ( eval1 ` K ) |
| 41 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
| 42 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 43 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
| 44 |
3
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. CRing ) |
| 46 |
17
|
a1i |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ h = s ) -> h = s ) |
| 48 |
47
|
fveq2d |
|- ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ h = s ) -> ( G ` h ) = ( G ` s ) ) |
| 49 |
48
|
fveq2d |
|- ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ h = s ) -> ( ( eval1 ` K ) ` ( G ` h ) ) = ( ( eval1 ` K ) ` ( G ` s ) ) ) |
| 50 |
49
|
fveq1d |
|- ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ h = s ) -> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) |
| 51 |
|
simpr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> s e. ( NN0 ^m ( 0 ... A ) ) ) |
| 52 |
|
fvexd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) e. _V ) |
| 53 |
46 50 51 52
|
fvmptd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( H ` s ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) |
| 54 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
| 55 |
54
|
crngmgp |
|- ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) |
| 56 |
44 55
|
syl |
|- ( ph -> ( mulGrp ` K ) e. CMnd ) |
| 57 |
5
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 58 |
|
eqid |
|- ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) |
| 59 |
56 57 58
|
isprimroot |
|- ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) <-> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) ) |
| 60 |
59
|
biimpd |
|- ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) ) |
| 61 |
16 60
|
mpd |
|- ( ph -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) |
| 62 |
61
|
simp1d |
|- ( ph -> M e. ( Base ` ( mulGrp ` K ) ) ) |
| 63 |
54 42
|
mgpbas |
|- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 64 |
62 63
|
eleqtrrdi |
|- ( ph -> M e. ( Base ` K ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> M e. ( Base ` K ) ) |
| 66 |
3
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. Field ) |
| 67 |
4
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> P e. Prime ) |
| 68 |
5
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> R e. NN ) |
| 69 |
6
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> N e. NN ) |
| 70 |
7
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> P || N ) |
| 71 |
8
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( N gcd R ) = 1 ) |
| 72 |
|
elmapi |
|- ( s e. ( NN0 ^m ( 0 ... A ) ) -> s : ( 0 ... A ) --> NN0 ) |
| 73 |
72
|
adantl |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> s : ( 0 ... A ) --> NN0 ) |
| 74 |
11
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> A e. NN0 ) |
| 75 |
|
0nn0 |
|- 0 e. NN0 |
| 76 |
75
|
a1i |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> 0 e. NN0 ) |
| 77 |
|
eqid |
|- ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) |
| 78 |
14
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 79 |
15
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 80 |
1 2 66 67 68 69 70 71 73 10 74 76 76 77 78 79
|
aks6d1c1rh |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) .~ ( G ` s ) ) |
| 81 |
1 80
|
aks6d1c1p1rcl |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) e. NN /\ ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) ) |
| 82 |
81
|
simprd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 83 |
40 41 42 43 45 65 82
|
fveval1fvcl |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) e. ( Base ` K ) ) |
| 84 |
53 83
|
eqeltrd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( H ` s ) e. ( Base ` K ) ) |
| 85 |
|
eqid |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 86 |
41
|
ply1crng |
|- ( K e. CRing -> ( Poly1 ` K ) e. CRing ) |
| 87 |
44 86
|
syl |
|- ( ph -> ( Poly1 ` K ) e. CRing ) |
| 88 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
| 89 |
88
|
crngmgp |
|- ( ( Poly1 ` K ) e. CRing -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 90 |
87 89
|
syl |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 91 |
90
|
cmnmndd |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 92 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> J = ( r E o ) ) |
| 93 |
12
|
a1i |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) ) |
| 94 |
|
simprl |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ ( k = r /\ l = o ) ) -> k = r ) |
| 95 |
94
|
oveq2d |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ ( k = r /\ l = o ) ) -> ( P ^ k ) = ( P ^ r ) ) |
| 96 |
|
simprr |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ ( k = r /\ l = o ) ) -> l = o ) |
| 97 |
96
|
oveq2d |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ ( k = r /\ l = o ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ o ) ) |
| 98 |
95 97
|
oveq12d |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ ( k = r /\ l = o ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) |
| 99 |
|
fz0ssnn0 |
|- ( 0 ... B ) C_ NN0 |
| 100 |
99
|
a1i |
|- ( ph -> ( 0 ... B ) C_ NN0 ) |
| 101 |
100
|
sselda |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> r e. NN0 ) |
| 102 |
101
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> r e. NN0 ) |
| 103 |
99
|
sseli |
|- ( o e. ( 0 ... B ) -> o e. NN0 ) |
| 104 |
103
|
adantl |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> o e. NN0 ) |
| 105 |
|
ovexd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. _V ) |
| 106 |
93 98 102 104 105
|
ovmpod |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( r E o ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) |
| 107 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 108 |
4 107
|
syl |
|- ( ph -> P e. NN ) |
| 109 |
108
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 110 |
109
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> P e. NN0 ) |
| 111 |
110
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> P e. NN0 ) |
| 112 |
111 102
|
nn0expcld |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( P ^ r ) e. NN0 ) |
| 113 |
109
|
nn0zd |
|- ( ph -> P e. ZZ ) |
| 114 |
108
|
nnne0d |
|- ( ph -> P =/= 0 ) |
| 115 |
6
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 116 |
115
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 117 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) |
| 118 |
113 114 116 117
|
syl3anc |
|- ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) |
| 119 |
7 118
|
mpbid |
|- ( ph -> ( N / P ) e. ZZ ) |
| 120 |
6
|
nnred |
|- ( ph -> N e. RR ) |
| 121 |
108
|
nnrpd |
|- ( ph -> P e. RR+ ) |
| 122 |
115
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
| 123 |
120 121 122
|
divge0d |
|- ( ph -> 0 <_ ( N / P ) ) |
| 124 |
119 123
|
jca |
|- ( ph -> ( ( N / P ) e. ZZ /\ 0 <_ ( N / P ) ) ) |
| 125 |
|
elnn0z |
|- ( ( N / P ) e. NN0 <-> ( ( N / P ) e. ZZ /\ 0 <_ ( N / P ) ) ) |
| 126 |
124 125
|
sylibr |
|- ( ph -> ( N / P ) e. NN0 ) |
| 127 |
126
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> ( N / P ) e. NN0 ) |
| 128 |
127
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( N / P ) e. NN0 ) |
| 129 |
128 104
|
nn0expcld |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( N / P ) ^ o ) e. NN0 ) |
| 130 |
112 129
|
nn0mulcld |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. NN0 ) |
| 131 |
106 130
|
eqeltrd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( r E o ) e. NN0 ) |
| 132 |
131
|
adantr |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> ( r E o ) e. NN0 ) |
| 133 |
92 132
|
eqeltrd |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> J e. NN0 ) |
| 134 |
19
|
a1i |
|- ( ph -> C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
| 135 |
21 134
|
eleqtrd |
|- ( ph -> J e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
| 136 |
6 4 7 12
|
aks6d1c2p1 |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |
| 137 |
136
|
ffnd |
|- ( ph -> E Fn ( NN0 X. NN0 ) ) |
| 138 |
100 100
|
jca |
|- ( ph -> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) |
| 139 |
18
|
a1i |
|- ( ph -> B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
| 140 |
|
eqid |
|- ( Z/nZ ` R ) = ( Z/nZ ` R ) |
| 141 |
6 4 7 5 8 12 13 140
|
hashscontpowcl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
| 142 |
141
|
nn0red |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) |
| 143 |
141
|
nn0ge0d |
|- ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
| 144 |
142 143
|
resqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) |
| 145 |
144
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ ) |
| 146 |
142 143
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
| 147 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 148 |
|
flge |
|- ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 149 |
144 147 148
|
syl2anc |
|- ( ph -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 150 |
146 149
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
| 151 |
145 150
|
jca |
|- ( ph -> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 152 |
|
elnn0z |
|- ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 <-> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 153 |
151 152
|
sylibr |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) |
| 154 |
139 153
|
eqeltrd |
|- ( ph -> B e. NN0 ) |
| 155 |
|
elnn0z |
|- ( B e. NN0 <-> ( B e. ZZ /\ 0 <_ B ) ) |
| 156 |
154 155
|
sylib |
|- ( ph -> ( B e. ZZ /\ 0 <_ B ) ) |
| 157 |
|
0z |
|- 0 e. ZZ |
| 158 |
|
eluz1 |
|- ( 0 e. ZZ -> ( B e. ( ZZ>= ` 0 ) <-> ( B e. ZZ /\ 0 <_ B ) ) ) |
| 159 |
157 158
|
ax-mp |
|- ( B e. ( ZZ>= ` 0 ) <-> ( B e. ZZ /\ 0 <_ B ) ) |
| 160 |
156 159
|
sylibr |
|- ( ph -> B e. ( ZZ>= ` 0 ) ) |
| 161 |
|
fzn0 |
|- ( ( 0 ... B ) =/= (/) <-> B e. ( ZZ>= ` 0 ) ) |
| 162 |
160 161
|
sylibr |
|- ( ph -> ( 0 ... B ) =/= (/) ) |
| 163 |
162 162
|
jca |
|- ( ph -> ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) ) |
| 164 |
|
xpnz |
|- ( ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) <-> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) |
| 165 |
163 164
|
sylib |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) |
| 166 |
|
ssxpb |
|- ( ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) -> ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) <-> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) ) |
| 167 |
165 166
|
syl |
|- ( ph -> ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) <-> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) ) |
| 168 |
138 167
|
mpbird |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) ) |
| 169 |
|
ovelimab |
|- ( ( E Fn ( NN0 X. NN0 ) /\ ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) ) -> ( J e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> E. r e. ( 0 ... B ) E. o e. ( 0 ... B ) J = ( r E o ) ) ) |
| 170 |
137 168 169
|
syl2anc |
|- ( ph -> ( J e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> E. r e. ( 0 ... B ) E. o e. ( 0 ... B ) J = ( r E o ) ) ) |
| 171 |
135 170
|
mpbid |
|- ( ph -> E. r e. ( 0 ... B ) E. o e. ( 0 ... B ) J = ( r E o ) ) |
| 172 |
133 171
|
r19.29vva |
|- ( ph -> J e. NN0 ) |
| 173 |
44
|
crngringd |
|- ( ph -> K e. Ring ) |
| 174 |
24 41 43
|
vr1cl |
|- ( K e. Ring -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 175 |
173 174
|
syl |
|- ( ph -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 176 |
88 43
|
mgpbas |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 177 |
176
|
eqcomi |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) |
| 178 |
177
|
eleq2i |
|- ( X e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) <-> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 179 |
175 178
|
sylibr |
|- ( ph -> X e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 180 |
85 23 91 172 179
|
mulgnn0cld |
|- ( ph -> ( J .^ X ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 181 |
180 176
|
eleqtrrdi |
|- ( ph -> ( J .^ X ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 182 |
181
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( J .^ X ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 183 |
175
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 184 |
40 24 42 41 43 45 84
|
evl1vard |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` X ) ` ( H ` s ) ) = ( H ` s ) ) ) |
| 185 |
184
|
simprd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` X ) ` ( H ` s ) ) = ( H ` s ) ) |
| 186 |
183 185
|
jca |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` X ) ` ( H ` s ) ) = ( H ` s ) ) ) |
| 187 |
172
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> J e. NN0 ) |
| 188 |
40 41 42 43 45 84 186 23 58 187
|
evl1expd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( J .^ X ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( J .^ X ) ) ` ( H ` s ) ) = ( J ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) ) ) |
| 189 |
188
|
simprd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( J .^ X ) ) ` ( H ` s ) ) = ( J ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) ) |
| 190 |
53
|
oveq2d |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( J ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) = ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
| 191 |
3
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> K e. Field ) |
| 192 |
4
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> P e. Prime ) |
| 193 |
5
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> R e. NN ) |
| 194 |
6
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> N e. NN ) |
| 195 |
7
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> P || N ) |
| 196 |
8
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( N gcd R ) = 1 ) |
| 197 |
9
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> F : ( 0 ... A ) --> NN0 ) |
| 198 |
11
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> A e. NN0 ) |
| 199 |
14
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 200 |
15
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 201 |
16
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 202 |
20
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I e. C ) |
| 203 |
21
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> J e. C ) |
| 204 |
22
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I < J ) |
| 205 |
26
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> U e. NN ) |
| 206 |
27
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> J = ( I + ( U x. R ) ) ) |
| 207 |
51
|
ad6antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> s e. ( NN0 ^m ( 0 ... A ) ) ) |
| 208 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> r e. ( 0 ... B ) ) |
| 209 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> o e. ( 0 ... B ) ) |
| 210 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> J = ( r E o ) ) |
| 211 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> p e. ( 0 ... B ) ) |
| 212 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> q e. ( 0 ... B ) ) |
| 213 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I = ( p E q ) ) |
| 214 |
|
simpr |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I = ( p E q ) ) |
| 215 |
12
|
a1i |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) ) |
| 216 |
|
simprl |
|- ( ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) /\ ( k = p /\ l = q ) ) -> k = p ) |
| 217 |
216
|
oveq2d |
|- ( ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) /\ ( k = p /\ l = q ) ) -> ( P ^ k ) = ( P ^ p ) ) |
| 218 |
|
simprr |
|- ( ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) /\ ( k = p /\ l = q ) ) -> l = q ) |
| 219 |
218
|
oveq2d |
|- ( ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) /\ ( k = p /\ l = q ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ q ) ) |
| 220 |
217 219
|
oveq12d |
|- ( ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) /\ ( k = p /\ l = q ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) |
| 221 |
100
|
sselda |
|- ( ( ph /\ p e. ( 0 ... B ) ) -> p e. NN0 ) |
| 222 |
221
|
adantr |
|- ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) -> p e. NN0 ) |
| 223 |
222
|
adantr |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> p e. NN0 ) |
| 224 |
99
|
sseli |
|- ( q e. ( 0 ... B ) -> q e. NN0 ) |
| 225 |
224
|
adantl |
|- ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) -> q e. NN0 ) |
| 226 |
225
|
adantr |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> q e. NN0 ) |
| 227 |
|
ovexd |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. _V ) |
| 228 |
215 220 223 226 227
|
ovmpod |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( p E q ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) |
| 229 |
214 228
|
eqtrd |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) |
| 230 |
109
|
ad3antrrr |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> P e. NN0 ) |
| 231 |
230 223
|
nn0expcld |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( P ^ p ) e. NN0 ) |
| 232 |
126
|
ad2antrr |
|- ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) -> ( N / P ) e. NN0 ) |
| 233 |
232
|
adantr |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( N / P ) e. NN0 ) |
| 234 |
233 226
|
nn0expcld |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( ( N / P ) ^ q ) e. NN0 ) |
| 235 |
231 234
|
nn0mulcld |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. NN0 ) |
| 236 |
229 235
|
eqeltrd |
|- ( ( ( ( ph /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I e. NN0 ) |
| 237 |
20 134
|
eleqtrd |
|- ( ph -> I e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
| 238 |
|
ovelimab |
|- ( ( E Fn ( NN0 X. NN0 ) /\ ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) ) -> ( I e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> E. p e. ( 0 ... B ) E. q e. ( 0 ... B ) I = ( p E q ) ) ) |
| 239 |
137 168 238
|
syl2anc |
|- ( ph -> ( I e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> E. p e. ( 0 ... B ) E. q e. ( 0 ... B ) I = ( p E q ) ) ) |
| 240 |
237 239
|
mpbid |
|- ( ph -> E. p e. ( 0 ... B ) E. q e. ( 0 ... B ) I = ( p E q ) ) |
| 241 |
236 240
|
r19.29vva |
|- ( ph -> I e. NN0 ) |
| 242 |
241
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> I e. NN0 ) |
| 243 |
242
|
ad6antr |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> I e. NN0 ) |
| 244 |
1 2 191 192 193 194 195 196 197 10 198 12 13 199 200 201 17 18 19 202 203 204 23 24 25 205 206 207 208 209 210 211 212 213 243
|
aks6d1c2lem3 |
|- ( ( ( ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) /\ p e. ( 0 ... B ) ) /\ q e. ( 0 ... B ) ) /\ I = ( p E q ) ) -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
| 245 |
240
|
ad4antr |
|- ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> E. p e. ( 0 ... B ) E. q e. ( 0 ... B ) I = ( p E q ) ) |
| 246 |
244 245
|
r19.29vva |
|- ( ( ( ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
| 247 |
171
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> E. r e. ( 0 ... B ) E. o e. ( 0 ... B ) J = ( r E o ) ) |
| 248 |
246 247
|
r19.29vva |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
| 249 |
53
|
eqcomd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) = ( H ` s ) ) |
| 250 |
249
|
oveq2d |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) ) |
| 251 |
190 248 250
|
3eqtrd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( J ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) ) |
| 252 |
40 41 42 43 45 84 186 23 58 242
|
evl1expd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( I .^ X ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) ) ) |
| 253 |
252
|
simprd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) ) |
| 254 |
253
|
eqcomd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( I ( .g ` ( mulGrp ` K ) ) ( H ` s ) ) = ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) |
| 255 |
189 251 254
|
3eqtrd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( J .^ X ) ) ` ( H ` s ) ) = ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) |
| 256 |
182 255
|
jca |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( J .^ X ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( J .^ X ) ) ` ( H ` s ) ) = ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) ) |
| 257 |
85 23 91 241 179
|
mulgnn0cld |
|- ( ph -> ( I .^ X ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 258 |
176
|
eleq2i |
|- ( ( I .^ X ) e. ( Base ` ( Poly1 ` K ) ) <-> ( I .^ X ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 259 |
257 258
|
sylibr |
|- ( ph -> ( I .^ X ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 260 |
259
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( I .^ X ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 261 |
|
eqidd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) = ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) |
| 262 |
260 261
|
jca |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( I .^ X ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) = ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) ) |
| 263 |
|
eqid |
|- ( -g ` ( Poly1 ` K ) ) = ( -g ` ( Poly1 ` K ) ) |
| 264 |
|
eqid |
|- ( -g ` K ) = ( -g ` K ) |
| 265 |
40 41 42 43 45 84 256 262 263 264
|
evl1subd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) ` ( H ` s ) ) = ( ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) ) ) |
| 266 |
265
|
simprd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) ` ( H ` s ) ) = ( ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) ) |
| 267 |
45
|
crnggrpd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. Grp ) |
| 268 |
40 41 42 43 45 84 260
|
fveval1fvcl |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) e. ( Base ` K ) ) |
| 269 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 270 |
42 269 264
|
grpsubid |
|- ( ( K e. Grp /\ ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) e. ( Base ` K ) ) -> ( ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) = ( 0g ` K ) ) |
| 271 |
267 268 270
|
syl2anc |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( I .^ X ) ) ` ( H ` s ) ) ) = ( 0g ` K ) ) |
| 272 |
266 271
|
eqtrd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) ` ( H ` s ) ) = ( 0g ` K ) ) |
| 273 |
39 272
|
eqtrd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) = ( 0g ` K ) ) |
| 274 |
|
fvexd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. _V ) |
| 275 |
|
elsng |
|- ( ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. _V -> ( ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. { ( 0g ` K ) } <-> ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) = ( 0g ` K ) ) ) |
| 276 |
274 275
|
syl |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. { ( 0g ` K ) } <-> ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) = ( 0g ` K ) ) ) |
| 277 |
273 276
|
mpbird |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. { ( 0g ` K ) } ) |
| 278 |
87
|
crnggrpd |
|- ( ph -> ( Poly1 ` K ) e. Grp ) |
| 279 |
43 263
|
grpsubcl |
|- ( ( ( Poly1 ` K ) e. Grp /\ ( J .^ X ) e. ( Base ` ( Poly1 ` K ) ) /\ ( I .^ X ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 280 |
278 181 259 279
|
syl3anc |
|- ( ph -> ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 281 |
25 280
|
eqeltrid |
|- ( ph -> S e. ( Base ` ( Poly1 ` K ) ) ) |
| 282 |
|
eqid |
|- ( K ^s ( Base ` K ) ) = ( K ^s ( Base ` K ) ) |
| 283 |
40 41 282 42
|
evl1rhm |
|- ( K e. CRing -> ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) ) |
| 284 |
44 283
|
syl |
|- ( ph -> ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) ) |
| 285 |
|
eqid |
|- ( Base ` ( K ^s ( Base ` K ) ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) |
| 286 |
43 285
|
rhmf |
|- ( ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 287 |
284 286
|
syl |
|- ( ph -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 288 |
287
|
ffvelcdmda |
|- ( ( ph /\ S e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( eval1 ` K ) ` S ) e. ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 289 |
288
|
ex |
|- ( ph -> ( S e. ( Base ` ( Poly1 ` K ) ) -> ( ( eval1 ` K ) ` S ) e. ( Base ` ( K ^s ( Base ` K ) ) ) ) ) |
| 290 |
281 289
|
mpd |
|- ( ph -> ( ( eval1 ` K ) ` S ) e. ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 291 |
|
fvexd |
|- ( ph -> ( Base ` K ) e. _V ) |
| 292 |
282 42
|
pwsbas |
|- ( ( K e. Field /\ ( Base ` K ) e. _V ) -> ( ( Base ` K ) ^m ( Base ` K ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 293 |
3 291 292
|
syl2anc |
|- ( ph -> ( ( Base ` K ) ^m ( Base ` K ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 294 |
290 293
|
eleqtrrd |
|- ( ph -> ( ( eval1 ` K ) ` S ) e. ( ( Base ` K ) ^m ( Base ` K ) ) ) |
| 295 |
291 291
|
elmapd |
|- ( ph -> ( ( ( eval1 ` K ) ` S ) e. ( ( Base ` K ) ^m ( Base ` K ) ) <-> ( ( eval1 ` K ) ` S ) : ( Base ` K ) --> ( Base ` K ) ) ) |
| 296 |
294 295
|
mpbid |
|- ( ph -> ( ( eval1 ` K ) ` S ) : ( Base ` K ) --> ( Base ` K ) ) |
| 297 |
|
ffn |
|- ( ( ( eval1 ` K ) ` S ) : ( Base ` K ) --> ( Base ` K ) -> ( ( eval1 ` K ) ` S ) Fn ( Base ` K ) ) |
| 298 |
296 297
|
syl |
|- ( ph -> ( ( eval1 ` K ) ` S ) Fn ( Base ` K ) ) |
| 299 |
298
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( eval1 ` K ) ` S ) Fn ( Base ` K ) ) |
| 300 |
|
fnfun |
|- ( ( ( eval1 ` K ) ` S ) Fn ( Base ` K ) -> Fun ( ( eval1 ` K ) ` S ) ) |
| 301 |
299 300
|
syl |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> Fun ( ( eval1 ` K ) ` S ) ) |
| 302 |
|
fndm |
|- ( ( ( eval1 ` K ) ` S ) Fn ( Base ` K ) -> dom ( ( eval1 ` K ) ` S ) = ( Base ` K ) ) |
| 303 |
298 302
|
syl |
|- ( ph -> dom ( ( eval1 ` K ) ` S ) = ( Base ` K ) ) |
| 304 |
303
|
adantr |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> dom ( ( eval1 ` K ) ` S ) = ( Base ` K ) ) |
| 305 |
84 304
|
eleqtrrd |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( H ` s ) e. dom ( ( eval1 ` K ) ` S ) ) |
| 306 |
|
fvimacnv |
|- ( ( Fun ( ( eval1 ` K ) ` S ) /\ ( H ` s ) e. dom ( ( eval1 ` K ) ` S ) ) -> ( ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. { ( 0g ` K ) } <-> ( H ` s ) e. ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) ) |
| 307 |
301 305 306
|
syl2anc |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( ( ( eval1 ` K ) ` S ) ` ( H ` s ) ) e. { ( 0g ` K ) } <-> ( H ` s ) e. ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) ) |
| 308 |
277 307
|
mpbid |
|- ( ( ph /\ s e. ( NN0 ^m ( 0 ... A ) ) ) -> ( H ` s ) e. ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) |
| 309 |
32 36 308
|
funimassd |
|- ( ph -> ( H " ( NN0 ^m ( 0 ... A ) ) ) C_ ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) |
| 310 |
31 309
|
ssexd |
|- ( ph -> ( H " ( NN0 ^m ( 0 ... A ) ) ) e. _V ) |
| 311 |
25
|
a1i |
|- ( ph -> S = ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) |
| 312 |
311
|
fveq2d |
|- ( ph -> ( ( deg1 ` K ) ` S ) = ( ( deg1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) ) |
| 313 |
|
eqid |
|- ( deg1 ` K ) = ( deg1 ` K ) |
| 314 |
|
isfld |
|- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
| 315 |
314
|
biimpi |
|- ( K e. Field -> ( K e. DivRing /\ K e. CRing ) ) |
| 316 |
315
|
simpld |
|- ( K e. Field -> K e. DivRing ) |
| 317 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
| 318 |
316 317
|
syl |
|- ( K e. Field -> K e. NzRing ) |
| 319 |
3 318
|
syl |
|- ( ph -> K e. NzRing ) |
| 320 |
313 41 24 88 23
|
deg1pw |
|- ( ( K e. NzRing /\ I e. NN0 ) -> ( ( deg1 ` K ) ` ( I .^ X ) ) = I ) |
| 321 |
319 241 320
|
syl2anc |
|- ( ph -> ( ( deg1 ` K ) ` ( I .^ X ) ) = I ) |
| 322 |
321
|
eqcomd |
|- ( ph -> I = ( ( deg1 ` K ) ` ( I .^ X ) ) ) |
| 323 |
313 41 24 88 23
|
deg1pw |
|- ( ( K e. NzRing /\ J e. NN0 ) -> ( ( deg1 ` K ) ` ( J .^ X ) ) = J ) |
| 324 |
319 172 323
|
syl2anc |
|- ( ph -> ( ( deg1 ` K ) ` ( J .^ X ) ) = J ) |
| 325 |
324
|
eqcomd |
|- ( ph -> J = ( ( deg1 ` K ) ` ( J .^ X ) ) ) |
| 326 |
22 322 325
|
3brtr3d |
|- ( ph -> ( ( deg1 ` K ) ` ( I .^ X ) ) < ( ( deg1 ` K ) ` ( J .^ X ) ) ) |
| 327 |
41 313 173 43 263 181 259 326
|
deg1sub |
|- ( ph -> ( ( deg1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) = ( ( deg1 ` K ) ` ( J .^ X ) ) ) |
| 328 |
312 327
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` S ) = ( ( deg1 ` K ) ` ( J .^ X ) ) ) |
| 329 |
328 324
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` S ) = J ) |
| 330 |
329 172
|
eqeltrd |
|- ( ph -> ( ( deg1 ` K ) ` S ) e. NN0 ) |
| 331 |
|
eqid |
|- ( 0g ` ( Poly1 ` K ) ) = ( 0g ` ( Poly1 ` K ) ) |
| 332 |
|
fldidom |
|- ( K e. Field -> K e. IDomn ) |
| 333 |
3 332
|
syl |
|- ( ph -> K e. IDomn ) |
| 334 |
313 41 331 43
|
deg1nn0clb |
|- ( ( K e. Ring /\ S e. ( Base ` ( Poly1 ` K ) ) ) -> ( S =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` S ) e. NN0 ) ) |
| 335 |
173 281 334
|
syl2anc |
|- ( ph -> ( S =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` S ) e. NN0 ) ) |
| 336 |
330 335
|
mpbird |
|- ( ph -> S =/= ( 0g ` ( Poly1 ` K ) ) ) |
| 337 |
41 43 313 40 269 331 333 281 336
|
fta1g |
|- ( ph -> ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) <_ ( ( deg1 ` K ) ` S ) ) |
| 338 |
|
hashbnd |
|- ( ( ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) e. _V /\ ( ( deg1 ` K ) ` S ) e. NN0 /\ ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) <_ ( ( deg1 ` K ) ` S ) ) -> ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) e. Fin ) |
| 339 |
31 330 337 338
|
syl3anc |
|- ( ph -> ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) e. Fin ) |
| 340 |
|
hashcl |
|- ( ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) e. Fin -> ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) e. NN0 ) |
| 341 |
339 340
|
syl |
|- ( ph -> ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) e. NN0 ) |
| 342 |
|
hashss |
|- ( ( ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) e. _V /\ ( H " ( NN0 ^m ( 0 ... A ) ) ) C_ ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) ) |
| 343 |
31 309 342
|
syl2anc |
|- ( ph -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) ) |
| 344 |
|
hashbnd |
|- ( ( ( H " ( NN0 ^m ( 0 ... A ) ) ) e. _V /\ ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) e. NN0 /\ ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) ) -> ( H " ( NN0 ^m ( 0 ... A ) ) ) e. Fin ) |
| 345 |
310 341 343 344
|
syl3anc |
|- ( ph -> ( H " ( NN0 ^m ( 0 ... A ) ) ) e. Fin ) |
| 346 |
|
hashcl |
|- ( ( H " ( NN0 ^m ( 0 ... A ) ) ) e. Fin -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) e. NN0 ) |
| 347 |
345 346
|
syl |
|- ( ph -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) e. NN0 ) |
| 348 |
347
|
nn0red |
|- ( ph -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) e. RR ) |
| 349 |
341
|
nn0red |
|- ( ph -> ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) e. RR ) |
| 350 |
115 154
|
nn0expcld |
|- ( ph -> ( N ^ B ) e. NN0 ) |
| 351 |
350
|
nn0red |
|- ( ph -> ( N ^ B ) e. RR ) |
| 352 |
172
|
nn0red |
|- ( ph -> J e. RR ) |
| 353 |
324 352
|
eqeltrd |
|- ( ph -> ( ( deg1 ` K ) ` ( J .^ X ) ) e. RR ) |
| 354 |
327 353
|
eqeltrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) e. RR ) |
| 355 |
312 354
|
eqeltrd |
|- ( ph -> ( ( deg1 ` K ) ` S ) e. RR ) |
| 356 |
107
|
nnred |
|- ( P e. Prime -> P e. RR ) |
| 357 |
4 356
|
syl |
|- ( ph -> P e. RR ) |
| 358 |
357
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> P e. RR ) |
| 359 |
358
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> P e. RR ) |
| 360 |
359 102
|
reexpcld |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( P ^ r ) e. RR ) |
| 361 |
120 357 114
|
redivcld |
|- ( ph -> ( N / P ) e. RR ) |
| 362 |
361
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> ( N / P ) e. RR ) |
| 363 |
362
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( N / P ) e. RR ) |
| 364 |
363 104
|
reexpcld |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( N / P ) ^ o ) e. RR ) |
| 365 |
360 364
|
remulcld |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. RR ) |
| 366 |
357 154
|
reexpcld |
|- ( ph -> ( P ^ B ) e. RR ) |
| 367 |
366
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> ( P ^ B ) e. RR ) |
| 368 |
361 154
|
reexpcld |
|- ( ph -> ( ( N / P ) ^ B ) e. RR ) |
| 369 |
368
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> ( ( N / P ) ^ B ) e. RR ) |
| 370 |
367 369
|
remulcld |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> ( ( P ^ B ) x. ( ( N / P ) ^ B ) ) e. RR ) |
| 371 |
370
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ B ) x. ( ( N / P ) ^ B ) ) e. RR ) |
| 372 |
120 154
|
reexpcld |
|- ( ph -> ( N ^ B ) e. RR ) |
| 373 |
372
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> ( N ^ B ) e. RR ) |
| 374 |
373
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( N ^ B ) e. RR ) |
| 375 |
367
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( P ^ B ) e. RR ) |
| 376 |
369
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( N / P ) ^ B ) e. RR ) |
| 377 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 378 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 379 |
|
0le1 |
|- 0 <_ 1 |
| 380 |
379
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 381 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 382 |
4 381
|
syl |
|- ( ph -> 1 < P ) |
| 383 |
378 357 382
|
ltled |
|- ( ph -> 1 <_ P ) |
| 384 |
377 378 357 380 383
|
letrd |
|- ( ph -> 0 <_ P ) |
| 385 |
384
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> 0 <_ P ) |
| 386 |
385
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> 0 <_ P ) |
| 387 |
359 102 386
|
expge0d |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> 0 <_ ( P ^ r ) ) |
| 388 |
123
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> 0 <_ ( N / P ) ) |
| 389 |
388
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> 0 <_ ( N / P ) ) |
| 390 |
363 104 389
|
expge0d |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> 0 <_ ( ( N / P ) ^ o ) ) |
| 391 |
108
|
nnge1d |
|- ( ph -> 1 <_ P ) |
| 392 |
391
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> 1 <_ P ) |
| 393 |
392
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> 1 <_ P ) |
| 394 |
|
elfzuz3 |
|- ( r e. ( 0 ... B ) -> B e. ( ZZ>= ` r ) ) |
| 395 |
394
|
adantl |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> B e. ( ZZ>= ` r ) ) |
| 396 |
395
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> B e. ( ZZ>= ` r ) ) |
| 397 |
359 393 396
|
leexp2ad |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( P ^ r ) <_ ( P ^ B ) ) |
| 398 |
357
|
recnd |
|- ( ph -> P e. CC ) |
| 399 |
398
|
mullidd |
|- ( ph -> ( 1 x. P ) = P ) |
| 400 |
108
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 401 |
|
dvdsle |
|- ( ( P e. ZZ /\ N e. NN ) -> ( P || N -> P <_ N ) ) |
| 402 |
400 6 401
|
syl2anc |
|- ( ph -> ( P || N -> P <_ N ) ) |
| 403 |
7 402
|
mpd |
|- ( ph -> P <_ N ) |
| 404 |
399 403
|
eqbrtrd |
|- ( ph -> ( 1 x. P ) <_ N ) |
| 405 |
378 120 121
|
lemuldivd |
|- ( ph -> ( ( 1 x. P ) <_ N <-> 1 <_ ( N / P ) ) ) |
| 406 |
404 405
|
mpbid |
|- ( ph -> 1 <_ ( N / P ) ) |
| 407 |
406
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> 1 <_ ( N / P ) ) |
| 408 |
407
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> 1 <_ ( N / P ) ) |
| 409 |
|
elfzuz3 |
|- ( o e. ( 0 ... B ) -> B e. ( ZZ>= ` o ) ) |
| 410 |
409
|
adantl |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> B e. ( ZZ>= ` o ) ) |
| 411 |
363 408 410
|
leexp2ad |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( N / P ) ^ o ) <_ ( ( N / P ) ^ B ) ) |
| 412 |
360 375 364 376 387 390 397 411
|
lemul12ad |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) <_ ( ( P ^ B ) x. ( ( N / P ) ^ B ) ) ) |
| 413 |
120
|
recnd |
|- ( ph -> N e. CC ) |
| 414 |
413 398 114
|
divcan2d |
|- ( ph -> ( P x. ( N / P ) ) = N ) |
| 415 |
414
|
eqcomd |
|- ( ph -> N = ( P x. ( N / P ) ) ) |
| 416 |
415
|
adantr |
|- ( ( ph /\ r e. ( 0 ... B ) ) -> N = ( P x. ( N / P ) ) ) |
| 417 |
416
|
adantr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> N = ( P x. ( N / P ) ) ) |
| 418 |
417
|
oveq1d |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( N ^ B ) = ( ( P x. ( N / P ) ) ^ B ) ) |
| 419 |
359
|
recnd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> P e. CC ) |
| 420 |
363
|
recnd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( N / P ) e. CC ) |
| 421 |
154
|
ad2antrr |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> B e. NN0 ) |
| 422 |
419 420 421
|
mulexpd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P x. ( N / P ) ) ^ B ) = ( ( P ^ B ) x. ( ( N / P ) ^ B ) ) ) |
| 423 |
418 422
|
eqtr2d |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ B ) x. ( ( N / P ) ^ B ) ) = ( N ^ B ) ) |
| 424 |
374
|
leidd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( N ^ B ) <_ ( N ^ B ) ) |
| 425 |
423 424
|
eqbrtrd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ B ) x. ( ( N / P ) ^ B ) ) <_ ( N ^ B ) ) |
| 426 |
365 371 374 412 425
|
letrd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) <_ ( N ^ B ) ) |
| 427 |
106 426
|
eqbrtrd |
|- ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) -> ( r E o ) <_ ( N ^ B ) ) |
| 428 |
427
|
adantr |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> ( r E o ) <_ ( N ^ B ) ) |
| 429 |
92 428
|
eqbrtrd |
|- ( ( ( ( ph /\ r e. ( 0 ... B ) ) /\ o e. ( 0 ... B ) ) /\ J = ( r E o ) ) -> J <_ ( N ^ B ) ) |
| 430 |
429 171
|
r19.29vva |
|- ( ph -> J <_ ( N ^ B ) ) |
| 431 |
324 430
|
eqbrtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( J .^ X ) ) <_ ( N ^ B ) ) |
| 432 |
327 431
|
eqbrtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) ) <_ ( N ^ B ) ) |
| 433 |
312 432
|
eqbrtrd |
|- ( ph -> ( ( deg1 ` K ) ` S ) <_ ( N ^ B ) ) |
| 434 |
349 355 351 337 433
|
letrd |
|- ( ph -> ( # ` ( `' ( ( eval1 ` K ) ` S ) " { ( 0g ` K ) } ) ) <_ ( N ^ B ) ) |
| 435 |
348 349 351 343 434
|
letrd |
|- ( ph -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |