| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprimroot.1 |
|- ( ph -> R e. CMnd ) |
| 2 |
|
isprimroot.2 |
|- ( ph -> K e. NN0 ) |
| 3 |
|
isprimroot.3 |
|- .^ = ( .g ` R ) |
| 4 |
|
df-primroots |
|- PrimRoots = ( r e. CMnd , k e. NN0 |-> [_ ( Base ` r ) / b ]_ { x e. b | ( ( k ( .g ` r ) x ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) ) } ) |
| 5 |
4
|
a1i |
|- ( ph -> PrimRoots = ( r e. CMnd , k e. NN0 |-> [_ ( Base ` r ) / b ]_ { x e. b | ( ( k ( .g ` r ) x ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) ) } ) ) |
| 6 |
|
simprl |
|- ( ( ph /\ ( r = R /\ k = K ) ) -> r = R ) |
| 7 |
6
|
fveq2d |
|- ( ( ph /\ ( r = R /\ k = K ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 8 |
|
simplrl |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> r = R ) |
| 9 |
8
|
fveq2d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( .g ` r ) = ( .g ` R ) ) |
| 10 |
|
simplrr |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> k = K ) |
| 11 |
|
eqidd |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> x = x ) |
| 12 |
9 10 11
|
oveq123d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( k ( .g ` r ) x ) = ( K ( .g ` R ) x ) ) |
| 13 |
8
|
fveq2d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( 0g ` r ) = ( 0g ` R ) ) |
| 14 |
12 13
|
eqeq12d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( ( k ( .g ` r ) x ) = ( 0g ` r ) <-> ( K ( .g ` R ) x ) = ( 0g ` R ) ) ) |
| 15 |
6
|
fveq2d |
|- ( ( ph /\ ( r = R /\ k = K ) ) -> ( .g ` r ) = ( .g ` R ) ) |
| 16 |
15
|
oveqdr |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( l ( .g ` r ) x ) = ( l ( .g ` R ) x ) ) |
| 17 |
16 13
|
eqeq12d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( ( l ( .g ` r ) x ) = ( 0g ` r ) <-> ( l ( .g ` R ) x ) = ( 0g ` R ) ) ) |
| 18 |
10
|
breq1d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( k || l <-> K || l ) ) |
| 19 |
17 18
|
imbi12d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) <-> ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) ) |
| 20 |
19
|
ralbidv |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( A. l e. NN0 ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) <-> A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) ) |
| 21 |
14 20
|
anbi12d |
|- ( ( ( ph /\ ( r = R /\ k = K ) ) /\ x e. b ) -> ( ( ( k ( .g ` r ) x ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) ) <-> ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 22 |
21
|
rabbidva |
|- ( ( ph /\ ( r = R /\ k = K ) ) -> { x e. b | ( ( k ( .g ` r ) x ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) ) } = { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) |
| 23 |
7 22
|
csbeq12dv |
|- ( ( ph /\ ( r = R /\ k = K ) ) -> [_ ( Base ` r ) / b ]_ { x e. b | ( ( k ( .g ` r ) x ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) x ) = ( 0g ` r ) -> k || l ) ) } = [_ ( Base ` R ) / b ]_ { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) |
| 24 |
|
eqid |
|- { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } = { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } |
| 25 |
|
fvexd |
|- ( ph -> ( Base ` R ) e. _V ) |
| 26 |
24 25
|
rabexd |
|- ( ph -> { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } e. _V ) |
| 27 |
|
simpr |
|- ( ( ph /\ b = ( Base ` R ) ) -> b = ( Base ` R ) ) |
| 28 |
27
|
rabeqdv |
|- ( ( ph /\ b = ( Base ` R ) ) -> { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } = { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) |
| 29 |
25 28
|
csbied |
|- ( ph -> [_ ( Base ` R ) / b ]_ { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } = { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) |
| 30 |
29
|
eleq1d |
|- ( ph -> ( [_ ( Base ` R ) / b ]_ { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } e. _V <-> { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } e. _V ) ) |
| 31 |
26 30
|
mpbird |
|- ( ph -> [_ ( Base ` R ) / b ]_ { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } e. _V ) |
| 32 |
5 23 1 2 31
|
ovmpod |
|- ( ph -> ( R PrimRoots K ) = [_ ( Base ` R ) / b ]_ { x e. b | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) |
| 33 |
32 29
|
eqtrd |
|- ( ph -> ( R PrimRoots K ) = { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) |
| 34 |
33
|
eleq2d |
|- ( ph -> ( M e. ( R PrimRoots K ) <-> M e. { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } ) ) |
| 35 |
|
oveq2 |
|- ( x = M -> ( K ( .g ` R ) x ) = ( K ( .g ` R ) M ) ) |
| 36 |
35
|
eqeq1d |
|- ( x = M -> ( ( K ( .g ` R ) x ) = ( 0g ` R ) <-> ( K ( .g ` R ) M ) = ( 0g ` R ) ) ) |
| 37 |
|
oveq2 |
|- ( x = M -> ( l ( .g ` R ) x ) = ( l ( .g ` R ) M ) ) |
| 38 |
37
|
eqeq1d |
|- ( x = M -> ( ( l ( .g ` R ) x ) = ( 0g ` R ) <-> ( l ( .g ` R ) M ) = ( 0g ` R ) ) ) |
| 39 |
38
|
imbi1d |
|- ( x = M -> ( ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) <-> ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) |
| 40 |
39
|
ralbidv |
|- ( x = M -> ( A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) <-> A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) |
| 41 |
36 40
|
anbi12d |
|- ( x = M -> ( ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) <-> ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 42 |
41
|
elrab |
|- ( M e. { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } <-> ( M e. ( Base ` R ) /\ ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 43 |
42
|
a1i |
|- ( ph -> ( M e. { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } <-> ( M e. ( Base ` R ) /\ ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) ) |
| 44 |
|
3anass |
|- ( ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) <-> ( M e. ( Base ` R ) /\ ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 45 |
44
|
bicomi |
|- ( ( M e. ( Base ` R ) /\ ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) <-> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) |
| 46 |
45
|
a1i |
|- ( ph -> ( ( M e. ( Base ` R ) /\ ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) <-> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 47 |
|
biidd |
|- ( ph -> ( M e. ( Base ` R ) <-> M e. ( Base ` R ) ) ) |
| 48 |
3
|
eqcomi |
|- ( .g ` R ) = .^ |
| 49 |
48
|
a1i |
|- ( ph -> ( .g ` R ) = .^ ) |
| 50 |
49
|
oveqd |
|- ( ph -> ( K ( .g ` R ) M ) = ( K .^ M ) ) |
| 51 |
50
|
eqeq1d |
|- ( ph -> ( ( K ( .g ` R ) M ) = ( 0g ` R ) <-> ( K .^ M ) = ( 0g ` R ) ) ) |
| 52 |
49
|
oveqd |
|- ( ph -> ( l ( .g ` R ) M ) = ( l .^ M ) ) |
| 53 |
52
|
eqeq1d |
|- ( ph -> ( ( l ( .g ` R ) M ) = ( 0g ` R ) <-> ( l .^ M ) = ( 0g ` R ) ) ) |
| 54 |
53
|
imbi1d |
|- ( ph -> ( ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) <-> ( ( l .^ M ) = ( 0g ` R ) -> K || l ) ) ) |
| 55 |
54
|
ralbidv |
|- ( ph -> ( A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) <-> A. l e. NN0 ( ( l .^ M ) = ( 0g ` R ) -> K || l ) ) ) |
| 56 |
47 51 55
|
3anbi123d |
|- ( ph -> ( ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) <-> ( M e. ( Base ` R ) /\ ( K .^ M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l .^ M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 57 |
46 56
|
bitrd |
|- ( ph -> ( ( M e. ( Base ` R ) /\ ( ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) <-> ( M e. ( Base ` R ) /\ ( K .^ M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l .^ M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 58 |
43 57
|
bitrd |
|- ( ph -> ( M e. { x e. ( Base ` R ) | ( ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) } <-> ( M e. ( Base ` R ) /\ ( K .^ M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l .^ M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 59 |
34 58
|
bitrd |
|- ( ph -> ( M e. ( R PrimRoots K ) <-> ( M e. ( Base ` R ) /\ ( K .^ M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l .^ M ) = ( 0g ` R ) -> K || l ) ) ) ) |