| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprimroots |
|- PrimRoots |
| 1 |
|
vr |
|- r |
| 2 |
|
ccmn |
|- CMnd |
| 3 |
|
vk |
|- k |
| 4 |
|
cn0 |
|- NN0 |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- r |
| 7 |
6 5
|
cfv |
|- ( Base ` r ) |
| 8 |
|
vb |
|- b |
| 9 |
|
va |
|- a |
| 10 |
8
|
cv |
|- b |
| 11 |
3
|
cv |
|- k |
| 12 |
|
cmg |
|- .g |
| 13 |
6 12
|
cfv |
|- ( .g ` r ) |
| 14 |
9
|
cv |
|- a |
| 15 |
11 14 13
|
co |
|- ( k ( .g ` r ) a ) |
| 16 |
|
c0g |
|- 0g |
| 17 |
6 16
|
cfv |
|- ( 0g ` r ) |
| 18 |
15 17
|
wceq |
|- ( k ( .g ` r ) a ) = ( 0g ` r ) |
| 19 |
|
vl |
|- l |
| 20 |
19
|
cv |
|- l |
| 21 |
20 14 13
|
co |
|- ( l ( .g ` r ) a ) |
| 22 |
21 17
|
wceq |
|- ( l ( .g ` r ) a ) = ( 0g ` r ) |
| 23 |
|
cdvds |
|- || |
| 24 |
11 20 23
|
wbr |
|- k || l |
| 25 |
22 24
|
wi |
|- ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) |
| 26 |
25 19 4
|
wral |
|- A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) |
| 27 |
18 26
|
wa |
|- ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) |
| 28 |
27 9 10
|
crab |
|- { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } |
| 29 |
8 7 28
|
csb |
|- [_ ( Base ` r ) / b ]_ { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } |
| 30 |
1 3 2 4 29
|
cmpo |
|- ( r e. CMnd , k e. NN0 |-> [_ ( Base ` r ) / b ]_ { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } ) |
| 31 |
0 30
|
wceq |
|- PrimRoots = ( r e. CMnd , k e. NN0 |-> [_ ( Base ` r ) / b ]_ { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } ) |