Step |
Hyp |
Ref |
Expression |
0 |
|
cprimroots |
|- PrimRoots |
1 |
|
vr |
|- r |
2 |
|
ccmn |
|- CMnd |
3 |
|
vk |
|- k |
4 |
|
cn0 |
|- NN0 |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- r |
7 |
6 5
|
cfv |
|- ( Base ` r ) |
8 |
|
vb |
|- b |
9 |
|
va |
|- a |
10 |
8
|
cv |
|- b |
11 |
3
|
cv |
|- k |
12 |
|
cmg |
|- .g |
13 |
6 12
|
cfv |
|- ( .g ` r ) |
14 |
9
|
cv |
|- a |
15 |
11 14 13
|
co |
|- ( k ( .g ` r ) a ) |
16 |
|
c0g |
|- 0g |
17 |
6 16
|
cfv |
|- ( 0g ` r ) |
18 |
15 17
|
wceq |
|- ( k ( .g ` r ) a ) = ( 0g ` r ) |
19 |
|
vl |
|- l |
20 |
19
|
cv |
|- l |
21 |
20 14 13
|
co |
|- ( l ( .g ` r ) a ) |
22 |
21 17
|
wceq |
|- ( l ( .g ` r ) a ) = ( 0g ` r ) |
23 |
|
cdvds |
|- || |
24 |
11 20 23
|
wbr |
|- k || l |
25 |
22 24
|
wi |
|- ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) |
26 |
25 19 4
|
wral |
|- A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) |
27 |
18 26
|
wa |
|- ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) |
28 |
27 9 10
|
crab |
|- { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } |
29 |
8 7 28
|
csb |
|- [_ ( Base ` r ) / b ]_ { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } |
30 |
1 3 2 4 29
|
cmpo |
|- ( r e. CMnd , k e. NN0 |-> [_ ( Base ` r ) / b ]_ { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } ) |
31 |
0 30
|
wceq |
|- PrimRoots = ( r e. CMnd , k e. NN0 |-> [_ ( Base ` r ) / b ]_ { a e. b | ( ( k ( .g ` r ) a ) = ( 0g ` r ) /\ A. l e. NN0 ( ( l ( .g ` r ) a ) = ( 0g ` r ) -> k || l ) ) } ) |