Metamath Proof Explorer


Definition df-primroots

Description: A r -th primitive root is a root of unity such that the exponent divides r . (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Assertion df-primroots PrimRoots = r CMnd , k 0 Base r / b a b | k r a = 0 r l 0 l r a = 0 r k l

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprimroots class PrimRoots
1 vr setvar r
2 ccmn class CMnd
3 vk setvar k
4 cn0 class 0
5 cbs class Base
6 1 cv setvar r
7 6 5 cfv class Base r
8 vb setvar b
9 va setvar a
10 8 cv setvar b
11 3 cv setvar k
12 cmg class 𝑔
13 6 12 cfv class r
14 9 cv setvar a
15 11 14 13 co class k r a
16 c0g class 0 𝑔
17 6 16 cfv class 0 r
18 15 17 wceq wff k r a = 0 r
19 vl setvar l
20 19 cv setvar l
21 20 14 13 co class l r a
22 21 17 wceq wff l r a = 0 r
23 cdvds class
24 11 20 23 wbr wff k l
25 22 24 wi wff l r a = 0 r k l
26 25 19 4 wral wff l 0 l r a = 0 r k l
27 18 26 wa wff k r a = 0 r l 0 l r a = 0 r k l
28 27 9 10 crab class a b | k r a = 0 r l 0 l r a = 0 r k l
29 8 7 28 csb class Base r / b a b | k r a = 0 r l 0 l r a = 0 r k l
30 1 3 2 4 29 cmpo class r CMnd , k 0 Base r / b a b | k r a = 0 r l 0 l r a = 0 r k l
31 0 30 wceq wff PrimRoots = r CMnd , k 0 Base r / b a b | k r a = 0 r l 0 l r a = 0 r k l