| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprimroots |
⊢ PrimRoots |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
ccmn |
⊢ CMnd |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
cn0 |
⊢ ℕ0 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑟 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 8 |
|
vb |
⊢ 𝑏 |
| 9 |
|
va |
⊢ 𝑎 |
| 10 |
8
|
cv |
⊢ 𝑏 |
| 11 |
3
|
cv |
⊢ 𝑘 |
| 12 |
|
cmg |
⊢ .g |
| 13 |
6 12
|
cfv |
⊢ ( .g ‘ 𝑟 ) |
| 14 |
9
|
cv |
⊢ 𝑎 |
| 15 |
11 14 13
|
co |
⊢ ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) |
| 16 |
|
c0g |
⊢ 0g |
| 17 |
6 16
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 18 |
15 17
|
wceq |
⊢ ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) |
| 19 |
|
vl |
⊢ 𝑙 |
| 20 |
19
|
cv |
⊢ 𝑙 |
| 21 |
20 14 13
|
co |
⊢ ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) |
| 22 |
21 17
|
wceq |
⊢ ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) |
| 23 |
|
cdvds |
⊢ ∥ |
| 24 |
11 20 23
|
wbr |
⊢ 𝑘 ∥ 𝑙 |
| 25 |
22 24
|
wi |
⊢ ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) |
| 26 |
25 19 4
|
wral |
⊢ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) |
| 27 |
18 26
|
wa |
⊢ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) |
| 28 |
27 9 10
|
crab |
⊢ { 𝑎 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } |
| 29 |
8 7 28
|
csb |
⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑎 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } |
| 30 |
1 3 2 4 29
|
cmpo |
⊢ ( 𝑟 ∈ CMnd , 𝑘 ∈ ℕ0 ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑎 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } ) |
| 31 |
0 30
|
wceq |
⊢ PrimRoots = ( 𝑟 ∈ CMnd , 𝑘 ∈ ℕ0 ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑎 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑎 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } ) |