Step |
Hyp |
Ref |
Expression |
1 |
|
isprimroot.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
isprimroot.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
isprimroot.3 |
⊢ ↑ = ( .g ‘ 𝑅 ) |
4 |
|
df-primroots |
⊢ PrimRoots = ( 𝑟 ∈ CMnd , 𝑘 ∈ ℕ0 ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → PrimRoots = ( 𝑟 ∈ CMnd , 𝑘 ∈ ℕ0 ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } ) ) |
6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) → 𝑟 = 𝑅 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
8 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝑟 = 𝑅 ) |
9 |
8
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( .g ‘ 𝑟 ) = ( .g ‘ 𝑅 ) ) |
10 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝑘 = 𝐾 ) |
11 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 = 𝑥 ) |
12 |
9 10 11
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) ) |
13 |
8
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ↔ ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
15 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) → ( .g ‘ 𝑟 ) = ( .g ‘ 𝑅 ) ) |
16 |
15
|
oveqdr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) ) |
17 |
16 13
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ↔ ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
18 |
10
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 𝑘 ∥ 𝑙 ↔ 𝐾 ∥ 𝑙 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ↔ ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
21 |
14 20
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) ↔ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
22 |
21
|
rabbidva |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) → { 𝑥 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } = { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) |
23 |
7 22
|
csbeq12dv |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑘 = 𝐾 ) ) → ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝑘 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑟 ) 𝑥 ) = ( 0g ‘ 𝑟 ) → 𝑘 ∥ 𝑙 ) ) } = ⦋ ( Base ‘ 𝑅 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) |
24 |
|
eqid |
⊢ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } |
25 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
26 |
24 25
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ∈ V ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 = ( Base ‘ 𝑅 ) ) → 𝑏 = ( Base ‘ 𝑅 ) ) |
28 |
27
|
rabeqdv |
⊢ ( ( 𝜑 ∧ 𝑏 = ( Base ‘ 𝑅 ) ) → { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) |
29 |
25 28
|
csbied |
⊢ ( 𝜑 → ⦋ ( Base ‘ 𝑅 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) |
30 |
29
|
eleq1d |
⊢ ( 𝜑 → ( ⦋ ( Base ‘ 𝑅 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ∈ V ↔ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ∈ V ) ) |
31 |
26 30
|
mpbird |
⊢ ( 𝜑 → ⦋ ( Base ‘ 𝑅 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ∈ V ) |
32 |
5 23 1 2 31
|
ovmpod |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = ⦋ ( Base ‘ 𝑅 ) / 𝑏 ⦌ { 𝑥 ∈ 𝑏 ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) |
33 |
32 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) |
34 |
33
|
eleq2d |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ 𝑀 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ) ) |
35 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
37 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
39 |
38
|
imbi1d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
40 |
39
|
ralbidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
41 |
36 40
|
anbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ↔ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
42 |
41
|
elrab |
⊢ ( 𝑀 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
43 |
42
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) ) |
44 |
|
3anass |
⊢ ( ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
45 |
44
|
bicomi |
⊢ ( ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
46 |
45
|
a1i |
⊢ ( 𝜑 → ( ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
47 |
|
biidd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ 𝑅 ) ↔ 𝑀 ∈ ( Base ‘ 𝑅 ) ) ) |
48 |
3
|
eqcomi |
⊢ ( .g ‘ 𝑅 ) = ↑ |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( .g ‘ 𝑅 ) = ↑ ) |
50 |
49
|
oveqd |
⊢ ( 𝜑 → ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 𝐾 ↑ 𝑀 ) ) |
51 |
50
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐾 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
52 |
49
|
oveqd |
⊢ ( 𝜑 → ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 𝑙 ↑ 𝑀 ) ) |
53 |
52
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
54 |
53
|
imbi1d |
⊢ ( 𝜑 → ( ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
55 |
54
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
56 |
47 51 55
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
57 |
46 56
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
58 |
43 57
|
bitrd |
⊢ ( 𝜑 → ( 𝑀 ∈ { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝐾 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) } ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
59 |
34 58
|
bitrd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |