Step |
Hyp |
Ref |
Expression |
1 |
|
isprimroot2.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
isprimroot2.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
isprimroot2.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝑅 ) ) |
4 |
|
isprimroot2.4 |
⊢ ( 𝜑 → ( ( od ‘ 𝑅 ) ‘ 𝑀 ) = 𝐾 ) |
5 |
4
|
eqcomd |
⊢ ( 𝜑 → 𝐾 = ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝜑 → ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ( .g ‘ 𝑅 ) 𝑀 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
11 |
7 8 9 10
|
odid |
⊢ ( 𝑀 ∈ ( Base ‘ 𝑅 ) → ( ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → ( ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) |
13 |
6 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) |
14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) ∧ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → ( ( od ‘ 𝑅 ) ‘ 𝑀 ) = 𝐾 ) |
15 |
14
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) ∧ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → 𝐾 = ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ) |
16 |
1
|
cmnmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → 𝑅 ∈ Mnd ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → 𝑀 ∈ ( Base ‘ 𝑅 ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
20 |
7 8 9 10
|
oddvdsnn0 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ∥ 𝑙 ↔ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
21 |
17 18 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → ( ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ∥ 𝑙 ↔ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
22 |
21
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ↔ ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ∥ 𝑙 ) ) |
23 |
22
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ∥ 𝑙 ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) ∧ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → ( ( od ‘ 𝑅 ) ‘ 𝑀 ) ∥ 𝑙 ) |
25 |
15 24
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) ∧ ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → 𝐾 ∥ 𝑙 ) |
26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
27 |
26
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
28 |
3 13 27
|
3jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
29 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
30 |
1 29 9
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
31 |
28 30
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |