| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndmolinv.1 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
mndmolinv.2 |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 3 |
|
mndmolinv.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 4 |
|
mndmolinv.4 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ↔ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ) |
| 9 |
5 6 8
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) |
| 10 |
9
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) → ∃ 𝑦 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) |
| 12 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝑀 ∈ Mnd ) |
| 13 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝑥 ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 16 |
1 14 15
|
mndrid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑥 ) |
| 17 |
12 13 16
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑥 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝑥 = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 19 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) |
| 20 |
19
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 0g ‘ 𝑀 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 22 |
18 21
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝑥 = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 23 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝐴 ∈ 𝐵 ) |
| 24 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝑦 ∈ 𝐵 ) |
| 25 |
13 23 24
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 26 |
1 14
|
mndass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 27 |
12 25 26
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 28 |
27
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 29 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 31 |
1 14 15
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 32 |
12 24 31
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 33 |
30 32
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 34 |
22 28 33
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) → 𝑥 = 𝑦 ) |
| 35 |
34
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) → 𝑥 = 𝑦 ) ) |
| 36 |
35
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) → 𝑥 = 𝑦 ) ) |
| 37 |
36
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) → 𝑥 = 𝑦 ) ) ) |
| 38 |
37
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) = ( 0g ‘ 𝑀 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) → 𝑥 = 𝑦 ) ) ) |
| 39 |
11 38
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) → 𝑥 = 𝑦 ) ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) |
| 41 |
40
|
rmo2i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) → 𝑥 = 𝑦 ) → ∃* 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) |
| 42 |
39 41
|
syl |
⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝐴 ) = ( 0g ‘ 𝑀 ) ) |