| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndmolinv.1 |
|- B = ( Base ` M ) |
| 2 |
|
mndmolinv.2 |
|- ( ph -> M e. Mnd ) |
| 3 |
|
mndmolinv.3 |
|- ( ph -> A e. B ) |
| 4 |
|
mndmolinv.4 |
|- ( ph -> E. x e. B ( A ( +g ` M ) x ) = ( 0g ` M ) ) |
| 5 |
|
nfv |
|- F/ y ( A ( +g ` M ) x ) = ( 0g ` M ) |
| 6 |
|
nfv |
|- F/ x ( A ( +g ` M ) y ) = ( 0g ` M ) |
| 7 |
|
oveq2 |
|- ( x = y -> ( A ( +g ` M ) x ) = ( A ( +g ` M ) y ) ) |
| 8 |
7
|
eqeq1d |
|- ( x = y -> ( ( A ( +g ` M ) x ) = ( 0g ` M ) <-> ( A ( +g ` M ) y ) = ( 0g ` M ) ) ) |
| 9 |
5 6 8
|
cbvrexw |
|- ( E. x e. B ( A ( +g ` M ) x ) = ( 0g ` M ) <-> E. y e. B ( A ( +g ` M ) y ) = ( 0g ` M ) ) |
| 10 |
9
|
biimpi |
|- ( E. x e. B ( A ( +g ` M ) x ) = ( 0g ` M ) -> E. y e. B ( A ( +g ` M ) y ) = ( 0g ` M ) ) |
| 11 |
4 10
|
syl |
|- ( ph -> E. y e. B ( A ( +g ` M ) y ) = ( 0g ` M ) ) |
| 12 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> M e. Mnd ) |
| 13 |
|
simplr |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> x e. B ) |
| 14 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 15 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 16 |
1 14 15
|
mndrid |
|- ( ( M e. Mnd /\ x e. B ) -> ( x ( +g ` M ) ( 0g ` M ) ) = x ) |
| 17 |
12 13 16
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( x ( +g ` M ) ( 0g ` M ) ) = x ) |
| 18 |
17
|
eqcomd |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> x = ( x ( +g ` M ) ( 0g ` M ) ) ) |
| 19 |
|
simpllr |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( A ( +g ` M ) y ) = ( 0g ` M ) ) |
| 20 |
19
|
eqcomd |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( 0g ` M ) = ( A ( +g ` M ) y ) ) |
| 21 |
20
|
oveq2d |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( x ( +g ` M ) ( 0g ` M ) ) = ( x ( +g ` M ) ( A ( +g ` M ) y ) ) ) |
| 22 |
18 21
|
eqtrd |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> x = ( x ( +g ` M ) ( A ( +g ` M ) y ) ) ) |
| 23 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> A e. B ) |
| 24 |
|
simp-4r |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> y e. B ) |
| 25 |
13 23 24
|
3jca |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( x e. B /\ A e. B /\ y e. B ) ) |
| 26 |
1 14
|
mndass |
|- ( ( M e. Mnd /\ ( x e. B /\ A e. B /\ y e. B ) ) -> ( ( x ( +g ` M ) A ) ( +g ` M ) y ) = ( x ( +g ` M ) ( A ( +g ` M ) y ) ) ) |
| 27 |
12 25 26
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( ( x ( +g ` M ) A ) ( +g ` M ) y ) = ( x ( +g ` M ) ( A ( +g ` M ) y ) ) ) |
| 28 |
27
|
eqcomd |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( x ( +g ` M ) ( A ( +g ` M ) y ) ) = ( ( x ( +g ` M ) A ) ( +g ` M ) y ) ) |
| 29 |
|
simpr |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( x ( +g ` M ) A ) = ( 0g ` M ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( ( x ( +g ` M ) A ) ( +g ` M ) y ) = ( ( 0g ` M ) ( +g ` M ) y ) ) |
| 31 |
1 14 15
|
mndlid |
|- ( ( M e. Mnd /\ y e. B ) -> ( ( 0g ` M ) ( +g ` M ) y ) = y ) |
| 32 |
12 24 31
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( ( 0g ` M ) ( +g ` M ) y ) = y ) |
| 33 |
30 32
|
eqtrd |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> ( ( x ( +g ` M ) A ) ( +g ` M ) y ) = y ) |
| 34 |
22 28 33
|
3eqtrd |
|- ( ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) /\ ( x ( +g ` M ) A ) = ( 0g ` M ) ) -> x = y ) |
| 35 |
34
|
ex |
|- ( ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) /\ x e. B ) -> ( ( x ( +g ` M ) A ) = ( 0g ` M ) -> x = y ) ) |
| 36 |
35
|
ralrimiva |
|- ( ( ( ph /\ y e. B ) /\ ( A ( +g ` M ) y ) = ( 0g ` M ) ) -> A. x e. B ( ( x ( +g ` M ) A ) = ( 0g ` M ) -> x = y ) ) |
| 37 |
36
|
ex |
|- ( ( ph /\ y e. B ) -> ( ( A ( +g ` M ) y ) = ( 0g ` M ) -> A. x e. B ( ( x ( +g ` M ) A ) = ( 0g ` M ) -> x = y ) ) ) |
| 38 |
37
|
reximdva |
|- ( ph -> ( E. y e. B ( A ( +g ` M ) y ) = ( 0g ` M ) -> E. y e. B A. x e. B ( ( x ( +g ` M ) A ) = ( 0g ` M ) -> x = y ) ) ) |
| 39 |
11 38
|
mpd |
|- ( ph -> E. y e. B A. x e. B ( ( x ( +g ` M ) A ) = ( 0g ` M ) -> x = y ) ) |
| 40 |
|
nfv |
|- F/ y ( x ( +g ` M ) A ) = ( 0g ` M ) |
| 41 |
40
|
rmo2i |
|- ( E. y e. B A. x e. B ( ( x ( +g ` M ) A ) = ( 0g ` M ) -> x = y ) -> E* x e. B ( x ( +g ` M ) A ) = ( 0g ` M ) ) |
| 42 |
39 41
|
syl |
|- ( ph -> E* x e. B ( x ( +g ` M ) A ) = ( 0g ` M ) ) |