| Step |
Hyp |
Ref |
Expression |
| 1 |
|
linvh.1 |
|- ( ph -> X e. ( Base ` R ) ) |
| 2 |
|
linvh.2 |
|- ( ph -> E! i e. ( Base ` R ) ( i ( +g ` R ) X ) = ( 0g ` R ) ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 6 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 7 |
3 4 5 6
|
grpinvval |
|- ( X e. ( Base ` R ) -> ( ( invg ` R ) ` X ) = ( iota_ i e. ( Base ` R ) ( i ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 8 |
1 7
|
syl |
|- ( ph -> ( ( invg ` R ) ` X ) = ( iota_ i e. ( Base ` R ) ( i ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 9 |
|
riotacl2 |
|- ( E! i e. ( Base ` R ) ( i ( +g ` R ) X ) = ( 0g ` R ) -> ( iota_ i e. ( Base ` R ) ( i ( +g ` R ) X ) = ( 0g ` R ) ) e. { i e. ( Base ` R ) | ( i ( +g ` R ) X ) = ( 0g ` R ) } ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( iota_ i e. ( Base ` R ) ( i ( +g ` R ) X ) = ( 0g ` R ) ) e. { i e. ( Base ` R ) | ( i ( +g ` R ) X ) = ( 0g ` R ) } ) |
| 11 |
8 10
|
eqeltrd |
|- ( ph -> ( ( invg ` R ) ` X ) e. { i e. ( Base ` R ) | ( i ( +g ` R ) X ) = ( 0g ` R ) } ) |
| 12 |
|
oveq1 |
|- ( i = ( ( invg ` R ) ` X ) -> ( i ( +g ` R ) X ) = ( ( ( invg ` R ) ` X ) ( +g ` R ) X ) ) |
| 13 |
12
|
eqeq1d |
|- ( i = ( ( invg ` R ) ` X ) -> ( ( i ( +g ` R ) X ) = ( 0g ` R ) <-> ( ( ( invg ` R ) ` X ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 14 |
13
|
elrab |
|- ( ( ( invg ` R ) ` X ) e. { i e. ( Base ` R ) | ( i ( +g ` R ) X ) = ( 0g ` R ) } <-> ( ( ( invg ` R ) ` X ) e. ( Base ` R ) /\ ( ( ( invg ` R ) ` X ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 15 |
14
|
simprbi |
|- ( ( ( invg ` R ) ` X ) e. { i e. ( Base ` R ) | ( i ( +g ` R ) X ) = ( 0g ` R ) } -> ( ( ( invg ` R ) ` X ) ( +g ` R ) X ) = ( 0g ` R ) ) |
| 16 |
11 15
|
syl |
|- ( ph -> ( ( ( invg ` R ) ` X ) ( +g ` R ) X ) = ( 0g ` R ) ) |