Metamath Proof Explorer


Theorem linvh

Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses linvh.1 φ X Base R
linvh.2 φ ∃! i Base R i + R X = 0 R
Assertion linvh φ inv g R X + R X = 0 R

Proof

Step Hyp Ref Expression
1 linvh.1 φ X Base R
2 linvh.2 φ ∃! i Base R i + R X = 0 R
3 eqid Base R = Base R
4 eqid + R = + R
5 eqid 0 R = 0 R
6 eqid inv g R = inv g R
7 3 4 5 6 grpinvval X Base R inv g R X = ι i Base R | i + R X = 0 R
8 1 7 syl φ inv g R X = ι i Base R | i + R X = 0 R
9 riotacl2 ∃! i Base R i + R X = 0 R ι i Base R | i + R X = 0 R i Base R | i + R X = 0 R
10 2 9 syl φ ι i Base R | i + R X = 0 R i Base R | i + R X = 0 R
11 8 10 eqeltrd φ inv g R X i Base R | i + R X = 0 R
12 oveq1 i = inv g R X i + R X = inv g R X + R X
13 12 eqeq1d i = inv g R X i + R X = 0 R inv g R X + R X = 0 R
14 13 elrab inv g R X i Base R | i + R X = 0 R inv g R X Base R inv g R X + R X = 0 R
15 14 simprbi inv g R X i Base R | i + R X = 0 R inv g R X + R X = 0 R
16 11 15 syl φ inv g R X + R X = 0 R