Metamath Proof Explorer


Theorem primrootsunit1

Description: Primitive roots have left inverses. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses primrootsunit1.1 φ R CMnd
primrootsunit1.2 φ K
primrootsunit1.3 U = a Base R | i Base R i + R a = 0 R
Assertion primrootsunit1 φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel

Proof

Step Hyp Ref Expression
1 primrootsunit1.1 φ R CMnd
2 primrootsunit1.2 φ K
3 primrootsunit1.3 U = a Base R | i Base R i + R a = 0 R
4 1 adantr φ c R PrimRoots K R CMnd
5 2 nnnn0d φ K 0
6 5 adantr φ c R PrimRoots K K 0
7 eqid R = R
8 4 6 7 isprimroot φ c R PrimRoots K c R PrimRoots K c Base R K R c = 0 R l 0 l R c = 0 R K l
9 8 biimpd φ c R PrimRoots K c R PrimRoots K c Base R K R c = 0 R l 0 l R c = 0 R K l
10 9 syldbl2 φ c R PrimRoots K c Base R K R c = 0 R l 0 l R c = 0 R K l
11 10 simp1d φ c R PrimRoots K c Base R
12 1 cmnmndd φ R Mnd
13 12 adantr φ c R PrimRoots K R Mnd
14 nnm1nn0 K K 1 0
15 2 14 syl φ K 1 0
16 15 adantr φ c R PrimRoots K K 1 0
17 eqid Base R = Base R
18 17 7 mulgnn0cl R Mnd K 1 0 c Base R K 1 R c Base R
19 13 16 11 18 syl3anc φ c R PrimRoots K K 1 R c Base R
20 simpr φ c R PrimRoots K i = K 1 R c i = K 1 R c
21 20 oveq1d φ c R PrimRoots K i = K 1 R c i + R c = K 1 R c + R c
22 21 eqeq1d φ c R PrimRoots K i = K 1 R c i + R c = 0 R K 1 R c + R c = 0 R
23 2 nncnd φ K
24 1cnd φ 1
25 23 24 npcand φ K - 1 + 1 = K
26 25 eqcomd φ K = K - 1 + 1
27 26 adantr φ c R PrimRoots K K = K - 1 + 1
28 27 oveq1d φ c R PrimRoots K K R c = K - 1 + 1 R c
29 eqid + R = + R
30 17 7 29 mulgnn0p1 R Mnd K 1 0 c Base R K - 1 + 1 R c = K 1 R c + R c
31 13 16 11 30 syl3anc φ c R PrimRoots K K - 1 + 1 R c = K 1 R c + R c
32 28 31 eqtr2d φ c R PrimRoots K K 1 R c + R c = K R c
33 10 simp2d φ c R PrimRoots K K R c = 0 R
34 32 33 eqtrd φ c R PrimRoots K K 1 R c + R c = 0 R
35 19 22 34 rspcedvd φ c R PrimRoots K i Base R i + R c = 0 R
36 11 35 jca φ c R PrimRoots K c Base R i Base R i + R c = 0 R
37 oveq2 a = c i + R a = i + R c
38 37 eqeq1d a = c i + R a = 0 R i + R c = 0 R
39 38 rexbidv a = c i Base R i + R a = 0 R i Base R i + R c = 0 R
40 39 elrab c a Base R | i Base R i + R a = 0 R c Base R i Base R i + R c = 0 R
41 36 40 sylibr φ c R PrimRoots K c a Base R | i Base R i + R a = 0 R
42 3 eleq2i c U c a Base R | i Base R i + R a = 0 R
43 41 42 sylibr φ c R PrimRoots K c U
44 simpl φ b U φ
45 3 a1i φ U = a Base R | i Base R i + R a = 0 R
46 45 eleq2d φ b U b a Base R | i Base R i + R a = 0 R
47 46 biimpd φ b U b a Base R | i Base R i + R a = 0 R
48 47 imp φ b U b a Base R | i Base R i + R a = 0 R
49 44 48 jca φ b U φ b a Base R | i Base R i + R a = 0 R
50 elrabi b a Base R | i Base R i + R a = 0 R b Base R
51 50 adantl φ b a Base R | i Base R i + R a = 0 R b Base R
52 49 51 syl φ b U b Base R
53 52 ex φ b U b Base R
54 53 ssrdv φ U Base R
55 eqid R 𝑠 U = R 𝑠 U
56 55 17 ressbas2 U Base R U = Base R 𝑠 U
57 54 56 syl φ U = Base R 𝑠 U
58 57 adantr φ c R PrimRoots K U = Base R 𝑠 U
59 58 eleq2d φ c R PrimRoots K c U c Base R 𝑠 U
60 43 59 mpbid φ c R PrimRoots K c Base R 𝑠 U
61 12 ad2antrr φ b U d U R Mnd
62 52 adantr φ b U d U b Base R
63 simpl φ d U φ
64 45 eleq2d φ d U d a Base R | i Base R i + R a = 0 R
65 64 biimpd φ d U d a Base R | i Base R i + R a = 0 R
66 65 imp φ d U d a Base R | i Base R i + R a = 0 R
67 63 66 jca φ d U φ d a Base R | i Base R i + R a = 0 R
68 elrabi d a Base R | i Base R i + R a = 0 R d Base R
69 68 adantl φ d a Base R | i Base R i + R a = 0 R d Base R
70 67 69 syl φ d U d Base R
71 44 70 sylan φ b U d U d Base R
72 17 29 mndcl R Mnd b Base R d Base R b + R d Base R
73 61 62 71 72 syl3anc φ b U d U b + R d Base R
74 3 eleq2i d U d a Base R | i Base R i + R a = 0 R
75 oveq2 a = d i + R a = i + R d
76 75 eqeq1d a = d i + R a = 0 R i + R d = 0 R
77 76 rexbidv a = d i Base R i + R a = 0 R i Base R i + R d = 0 R
78 77 elrab d a Base R | i Base R i + R a = 0 R d Base R i Base R i + R d = 0 R
79 74 78 bitri d U d Base R i Base R i + R d = 0 R
80 79 biimpi d U d Base R i Base R i + R d = 0 R
81 80 simprd d U i Base R i + R d = 0 R
82 81 adantl φ b U d U i Base R i + R d = 0 R
83 1 ad4antr φ b U d U i Base R i + R d = 0 R R CMnd
84 71 ad2antrr φ b U d U i Base R i + R d = 0 R d Base R
85 simplr φ b U d U i Base R i + R d = 0 R i Base R
86 17 29 cmncom R CMnd d Base R i Base R d + R i = i + R d
87 83 84 85 86 syl3anc φ b U d U i Base R i + R d = 0 R d + R i = i + R d
88 simpr φ b U d U i Base R i + R d = 0 R i + R d = 0 R
89 87 88 eqtrd φ b U d U i Base R i + R d = 0 R d + R i = 0 R
90 89 ex φ b U d U i Base R i + R d = 0 R d + R i = 0 R
91 90 reximdva φ b U d U i Base R i + R d = 0 R i Base R d + R i = 0 R
92 82 91 mpd φ b U d U i Base R d + R i = 0 R
93 17 61 71 92 mndmolinv φ b U d U * i Base R i + R d = 0 R
94 82 93 jca φ b U d U i Base R i + R d = 0 R * i Base R i + R d = 0 R
95 reu5 ∃! i Base R i + R d = 0 R i Base R i + R d = 0 R * i Base R i + R d = 0 R
96 94 95 sylibr φ b U d U ∃! i Base R i + R d = 0 R
97 riotacl ∃! i Base R i + R d = 0 R ι i Base R | i + R d = 0 R Base R
98 96 97 syl φ b U d U ι i Base R | i + R d = 0 R Base R
99 eqid 0 R = 0 R
100 eqid inv g R = inv g R
101 17 29 99 100 grpinvval d Base R inv g R d = ι i Base R | i + R d = 0 R
102 71 101 syl φ b U d U inv g R d = ι i Base R | i + R d = 0 R
103 102 eleq1d φ b U d U inv g R d Base R ι i Base R | i + R d = 0 R Base R
104 98 103 mpbird φ b U d U inv g R d Base R
105 3 eleq2i b U b a Base R | i Base R i + R a = 0 R
106 oveq2 a = b i + R a = i + R b
107 106 eqeq1d a = b i + R a = 0 R i + R b = 0 R
108 107 rexbidv a = b i Base R i + R a = 0 R i Base R i + R b = 0 R
109 108 elrab b a Base R | i Base R i + R a = 0 R b Base R i Base R i + R b = 0 R
110 105 109 bitri b U b Base R i Base R i + R b = 0 R
111 110 biimpi b U b Base R i Base R i + R b = 0 R
112 111 simprd b U i Base R i + R b = 0 R
113 112 ad2antlr φ b U d U i Base R i + R b = 0 R
114 1 ad4antr φ b U d U i Base R i + R b = 0 R R CMnd
115 62 ad2antrr φ b U d U i Base R i + R b = 0 R b Base R
116 simplr φ b U d U i Base R i + R b = 0 R i Base R
117 17 29 cmncom R CMnd b Base R i Base R b + R i = i + R b
118 114 115 116 117 syl3anc φ b U d U i Base R i + R b = 0 R b + R i = i + R b
119 simpr φ b U d U i Base R i + R b = 0 R i + R b = 0 R
120 118 119 eqtrd φ b U d U i Base R i + R b = 0 R b + R i = 0 R
121 120 ex φ b U d U i Base R i + R b = 0 R b + R i = 0 R
122 121 reximdva φ b U d U i Base R i + R b = 0 R i Base R b + R i = 0 R
123 113 122 mpd φ b U d U i Base R b + R i = 0 R
124 17 61 62 123 mndmolinv φ b U d U * i Base R i + R b = 0 R
125 113 124 jca φ b U d U i Base R i + R b = 0 R * i Base R i + R b = 0 R
126 reu5 ∃! i Base R i + R b = 0 R i Base R i + R b = 0 R * i Base R i + R b = 0 R
127 125 126 sylibr φ b U d U ∃! i Base R i + R b = 0 R
128 riotacl ∃! i Base R i + R b = 0 R ι i Base R | i + R b = 0 R Base R
129 127 128 syl φ b U d U ι i Base R | i + R b = 0 R Base R
130 17 29 99 100 grpinvval b Base R inv g R b = ι i Base R | i + R b = 0 R
131 62 130 syl φ b U d U inv g R b = ι i Base R | i + R b = 0 R
132 131 eleq1d φ b U d U inv g R b Base R ι i Base R | i + R b = 0 R Base R
133 129 132 mpbird φ b U d U inv g R b Base R
134 17 29 mndcl R Mnd inv g R d Base R inv g R b Base R inv g R d + R inv g R b Base R
135 61 104 133 134 syl3anc φ b U d U inv g R d + R inv g R b Base R
136 oveq1 i = inv g R d + R inv g R b i + R b + R d = inv g R d + R inv g R b + R b + R d
137 136 eqeq1d i = inv g R d + R inv g R b i + R b + R d = 0 R inv g R d + R inv g R b + R b + R d = 0 R
138 137 adantl φ b U d U i = inv g R d + R inv g R b i + R b + R d = 0 R inv g R d + R inv g R b + R b + R d = 0 R
139 104 133 73 3jca φ b U d U inv g R d Base R inv g R b Base R b + R d Base R
140 17 29 mndass R Mnd inv g R d Base R inv g R b Base R b + R d Base R inv g R d + R inv g R b + R b + R d = inv g R d + R inv g R b + R b + R d
141 61 139 140 syl2anc φ b U d U inv g R d + R inv g R b + R b + R d = inv g R d + R inv g R b + R b + R d
142 133 62 71 3jca φ b U d U inv g R b Base R b Base R d Base R
143 17 29 mndass R Mnd inv g R b Base R b Base R d Base R inv g R b + R b + R d = inv g R b + R b + R d
144 143 eqcomd R Mnd inv g R b Base R b Base R d Base R inv g R b + R b + R d = inv g R b + R b + R d
145 61 142 144 syl2anc φ b U d U inv g R b + R b + R d = inv g R b + R b + R d
146 145 oveq2d φ b U d U inv g R d + R inv g R b + R b + R d = inv g R d + R inv g R b + R b + R d
147 62 127 linvh φ b U d U inv g R b + R b = 0 R
148 147 oveq1d φ b U d U inv g R b + R b + R d = 0 R + R d
149 148 oveq2d φ b U d U inv g R d + R inv g R b + R b + R d = inv g R d + R 0 R + R d
150 17 29 99 mndlid R Mnd d Base R 0 R + R d = d
151 61 71 150 syl2anc φ b U d U 0 R + R d = d
152 151 oveq2d φ b U d U inv g R d + R 0 R + R d = inv g R d + R d
153 71 96 linvh φ b U d U inv g R d + R d = 0 R
154 152 153 eqtrd φ b U d U inv g R d + R 0 R + R d = 0 R
155 149 154 eqtrd φ b U d U inv g R d + R inv g R b + R b + R d = 0 R
156 146 155 eqtrd φ b U d U inv g R d + R inv g R b + R b + R d = 0 R
157 141 156 eqtrd φ b U d U inv g R d + R inv g R b + R b + R d = 0 R
158 135 138 157 rspcedvd φ b U d U i Base R i + R b + R d = 0 R
159 73 158 jca φ b U d U b + R d Base R i Base R i + R b + R d = 0 R
160 oveq2 a = b + R d i + R a = i + R b + R d
161 160 eqeq1d a = b + R d i + R a = 0 R i + R b + R d = 0 R
162 161 rexbidv a = b + R d i Base R i + R a = 0 R i Base R i + R b + R d = 0 R
163 162 elrab b + R d a Base R | i Base R i + R a = 0 R b + R d Base R i Base R i + R b + R d = 0 R
164 159 163 sylibr φ b U d U b + R d a Base R | i Base R i + R a = 0 R
165 3 eleq2i b + R d U b + R d a Base R | i Base R i + R a = 0 R
166 165 a1i φ b U d U b + R d U b + R d a Base R | i Base R i + R a = 0 R
167 164 166 mpbird φ b U d U b + R d U
168 167 ralrimiva φ b U d U b + R d U
169 168 ralrimiva φ b U d U b + R d U
170 oveq2 a = 0 R i + R a = i + R 0 R
171 170 eqeq1d a = 0 R i + R a = 0 R i + R 0 R = 0 R
172 171 rexbidv a = 0 R i Base R i + R a = 0 R i Base R i + R 0 R = 0 R
173 17 99 mndidcl R Mnd 0 R Base R
174 12 173 syl φ 0 R Base R
175 12 174 jca φ R Mnd 0 R Base R
176 17 29 99 mndlid R Mnd 0 R Base R 0 R + R 0 R = 0 R
177 175 176 syl φ 0 R + R 0 R = 0 R
178 174 177 jca φ 0 R Base R 0 R + R 0 R = 0 R
179 oveq1 i = 0 R i + R 0 R = 0 R + R 0 R
180 179 eqeq1d i = 0 R i + R 0 R = 0 R 0 R + R 0 R = 0 R
181 180 rspcev 0 R Base R 0 R + R 0 R = 0 R i Base R i + R 0 R = 0 R
182 178 181 syl φ i Base R i + R 0 R = 0 R
183 172 174 182 elrabd φ 0 R a Base R | i Base R i + R a = 0 R
184 45 eleq2d φ 0 R U 0 R a Base R | i Base R i + R a = 0 R
185 183 184 mpbird φ 0 R U
186 17 29 99 55 issubmnd R Mnd U Base R 0 R U R 𝑠 U Mnd b U d U b + R d U
187 12 54 185 186 syl3anc φ R 𝑠 U Mnd b U d U b + R d U
188 169 187 mpbird φ R 𝑠 U Mnd
189 45 eleq2d φ q U q a Base R | i Base R i + R a = 0 R
190 189 biimpd φ q U q a Base R | i Base R i + R a = 0 R
191 190 imp φ q U q a Base R | i Base R i + R a = 0 R
192 oveq2 a = q i + R a = i + R q
193 192 eqeq1d a = q i + R a = 0 R i + R q = 0 R
194 193 rexbidv a = q i Base R i + R a = 0 R i Base R i + R q = 0 R
195 194 elrab q a Base R | i Base R i + R a = 0 R q Base R i Base R i + R q = 0 R
196 191 195 sylib φ q U q Base R i Base R i + R q = 0 R
197 196 simprd φ q U i Base R i + R q = 0 R
198 simprl φ q U i Base R i + R q = 0 R i Base R
199 196 simpld φ q U q Base R
200 199 adantr φ q U i Base R i + R q = 0 R q Base R
201 simpr φ q U i Base R i + R q = 0 R j = q j = q
202 201 oveq1d φ q U i Base R i + R q = 0 R j = q j + R i = q + R i
203 202 eqeq1d φ q U i Base R i + R q = 0 R j = q j + R i = 0 R q + R i = 0 R
204 1 ad2antrr φ q U i Base R i + R q = 0 R R CMnd
205 17 29 cmncom R CMnd i Base R q Base R i + R q = q + R i
206 204 198 200 205 syl3anc φ q U i Base R i + R q = 0 R i + R q = q + R i
207 simprr φ q U i Base R i + R q = 0 R i + R q = 0 R
208 206 207 eqtr3d φ q U i Base R i + R q = 0 R q + R i = 0 R
209 200 203 208 rspcedvd φ q U i Base R i + R q = 0 R j Base R j + R i = 0 R
210 198 209 jca φ q U i Base R i + R q = 0 R i Base R j Base R j + R i = 0 R
211 nfv j i + R a = 0 R
212 nfv i j + R a = 0 R
213 oveq1 i = j i + R a = j + R a
214 213 eqeq1d i = j i + R a = 0 R j + R a = 0 R
215 211 212 214 cbvrexw i Base R i + R a = 0 R j Base R j + R a = 0 R
216 215 rabbii a Base R | i Base R i + R a = 0 R = a Base R | j Base R j + R a = 0 R
217 3 216 eqtri U = a Base R | j Base R j + R a = 0 R
218 217 eleq2i i U i a Base R | j Base R j + R a = 0 R
219 oveq2 a = i j + R a = j + R i
220 219 eqeq1d a = i j + R a = 0 R j + R i = 0 R
221 220 rexbidv a = i j Base R j + R a = 0 R j Base R j + R i = 0 R
222 221 elrab i a Base R | j Base R j + R a = 0 R i Base R j Base R j + R i = 0 R
223 218 222 bitri i U i Base R j Base R j + R i = 0 R
224 210 223 sylibr φ q U i Base R i + R q = 0 R i U
225 197 224 207 reximssdv φ q U i U i + R q = 0 R
226 fvexd φ Base R V
227 3 226 rabexd φ U V
228 55 29 ressplusg U V + R = + R 𝑠 U
229 227 228 syl φ + R = + R 𝑠 U
230 229 eqcomd φ + R 𝑠 U = + R
231 230 adantr φ q U + R 𝑠 U = + R
232 231 adantr φ q U w = i + R 𝑠 U = + R
233 simpr φ q U w = i w = i
234 eqidd φ q U w = i q = q
235 232 233 234 oveq123d φ q U w = i w + R 𝑠 U q = i + R q
236 55 17 99 ress0g R Mnd 0 R U U Base R 0 R = 0 R 𝑠 U
237 12 185 54 236 syl3anc φ 0 R = 0 R 𝑠 U
238 237 eqcomd φ 0 R 𝑠 U = 0 R
239 238 adantr φ q U 0 R 𝑠 U = 0 R
240 239 adantr φ q U w = i 0 R 𝑠 U = 0 R
241 235 240 eqeq12d φ q U w = i w + R 𝑠 U q = 0 R 𝑠 U i + R q = 0 R
242 eqidd φ q U w = i U = U
243 241 242 cbvrexdva2 φ q U w U w + R 𝑠 U q = 0 R 𝑠 U i U i + R q = 0 R
244 225 243 mpbird φ q U w U w + R 𝑠 U q = 0 R 𝑠 U
245 57 eqcomd φ Base R 𝑠 U = U
246 245 adantr φ q U Base R 𝑠 U = U
247 244 246 rexeqtrrdv φ q U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
248 247 ex φ q U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
249 57 eleq2d φ q U q Base R 𝑠 U
250 249 imbi1d φ q U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U q Base R 𝑠 U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
251 248 250 mpbid φ q Base R 𝑠 U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
252 251 imp φ q Base R 𝑠 U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
253 252 ralrimiva φ q Base R 𝑠 U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
254 188 253 jca φ R 𝑠 U Mnd q Base R 𝑠 U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
255 eqid Base R 𝑠 U = Base R 𝑠 U
256 eqid + R 𝑠 U = + R 𝑠 U
257 eqid 0 R 𝑠 U = 0 R 𝑠 U
258 255 256 257 isgrp R 𝑠 U Grp R 𝑠 U Mnd q Base R 𝑠 U w Base R 𝑠 U w + R 𝑠 U q = 0 R 𝑠 U
259 254 258 sylibr φ R 𝑠 U Grp
260 259 ad2antrr φ b U d U R 𝑠 U Grp
261 simplr φ b U d U b U
262 57 adantr φ b U U = Base R 𝑠 U
263 262 adantr φ b U d U U = Base R 𝑠 U
264 263 eleq2d φ b U d U b U b Base R 𝑠 U
265 261 264 mpbid φ b U d U b Base R 𝑠 U
266 simpr φ b U d U d U
267 263 eleq2d φ b U d U d U d Base R 𝑠 U
268 266 267 mpbid φ b U d U d Base R 𝑠 U
269 255 256 grpcl R 𝑠 U Grp b Base R 𝑠 U d Base R 𝑠 U b + R 𝑠 U d Base R 𝑠 U
270 260 265 268 269 syl3anc φ b U d U b + R 𝑠 U d Base R 𝑠 U
271 263 eleq2d φ b U d U b + R 𝑠 U d U b + R 𝑠 U d Base R 𝑠 U
272 270 271 mpbird φ b U d U b + R 𝑠 U d U
273 229 adantr φ b U + R = + R 𝑠 U
274 273 oveqdr φ b U d U b + R d = b + R 𝑠 U d
275 274 eleq1d φ b U d U b + R d U b + R 𝑠 U d U
276 272 275 mpbird φ b U d U b + R d U
277 276 ralrimiva φ b U d U b + R d U
278 277 ralrimiva φ b U d U b + R d U
279 278 187 mpbird φ R 𝑠 U Mnd
280 12 279 jca φ R Mnd R 𝑠 U Mnd
281 54 185 jca φ U Base R 0 R U
282 280 281 jca φ R Mnd R 𝑠 U Mnd U Base R 0 R U
283 17 99 issubmndb U SubMnd R R Mnd R 𝑠 U Mnd U Base R 0 R U
284 282 283 sylibr φ U SubMnd R
285 284 adantr φ c R PrimRoots K U SubMnd R
286 285 6 43 3jca φ c R PrimRoots K U SubMnd R K 0 c U
287 eqid R 𝑠 U = R 𝑠 U
288 7 55 287 submmulg U SubMnd R K 0 c U K R c = K R 𝑠 U c
289 288 eqcomd U SubMnd R K 0 c U K R 𝑠 U c = K R c
290 286 289 syl φ c R PrimRoots K K R 𝑠 U c = K R c
291 238 adantr φ c R PrimRoots K 0 R 𝑠 U = 0 R
292 290 291 eqeq12d φ c R PrimRoots K K R 𝑠 U c = 0 R 𝑠 U K R c = 0 R
293 33 292 mpbird φ c R PrimRoots K K R 𝑠 U c = 0 R 𝑠 U
294 10 simp3d φ c R PrimRoots K l 0 l R c = 0 R K l
295 eqidd φ c R PrimRoots K 0 = 0
296 285 adantr φ c R PrimRoots K l 0 U SubMnd R
297 simpr φ c R PrimRoots K l 0 l 0
298 43 adantr φ c R PrimRoots K l 0 c U
299 296 297 298 3jca φ c R PrimRoots K l 0 U SubMnd R l 0 c U
300 7 55 287 submmulg U SubMnd R l 0 c U l R c = l R 𝑠 U c
301 299 300 syl φ c R PrimRoots K l 0 l R c = l R 𝑠 U c
302 237 ad2antrr φ c R PrimRoots K l 0 0 R = 0 R 𝑠 U
303 301 302 eqeq12d φ c R PrimRoots K l 0 l R c = 0 R l R 𝑠 U c = 0 R 𝑠 U
304 303 imbi1d φ c R PrimRoots K l 0 l R c = 0 R K l l R 𝑠 U c = 0 R 𝑠 U K l
305 295 304 raleqbidva φ c R PrimRoots K l 0 l R c = 0 R K l l 0 l R 𝑠 U c = 0 R 𝑠 U K l
306 294 305 mpbid φ c R PrimRoots K l 0 l R 𝑠 U c = 0 R 𝑠 U K l
307 60 293 306 3jca φ c R PrimRoots K c Base R 𝑠 U K R 𝑠 U c = 0 R 𝑠 U l 0 l R 𝑠 U c = 0 R 𝑠 U K l
308 1 3ad2ant1 φ b U d U R CMnd
309 62 3impa φ b U d U b Base R
310 71 3impa φ b U d U d Base R
311 17 29 cmncom R CMnd b Base R d Base R b + R d = d + R b
312 308 309 310 311 syl3anc φ b U d U b + R d = d + R b
313 57 229 279 312 iscmnd φ R 𝑠 U CMnd
314 313 5 287 isprimroot φ c R 𝑠 U PrimRoots K c Base R 𝑠 U K R 𝑠 U c = 0 R 𝑠 U l 0 l R 𝑠 U c = 0 R 𝑠 U K l
315 314 adantr φ c R PrimRoots K c R 𝑠 U PrimRoots K c Base R 𝑠 U K R 𝑠 U c = 0 R 𝑠 U l 0 l R 𝑠 U c = 0 R 𝑠 U K l
316 307 315 mpbird φ c R PrimRoots K c R 𝑠 U PrimRoots K
317 316 ex φ c R PrimRoots K c R 𝑠 U PrimRoots K
318 317 ssrdv φ R PrimRoots K R 𝑠 U PrimRoots K
319 313 adantr φ c R 𝑠 U PrimRoots K R 𝑠 U CMnd
320 5 adantr φ c R 𝑠 U PrimRoots K K 0
321 319 320 287 isprimroot φ c R 𝑠 U PrimRoots K c R 𝑠 U PrimRoots K c Base R 𝑠 U K R 𝑠 U c = 0 R 𝑠 U l 0 l R 𝑠 U c = 0 R 𝑠 U K l
322 321 biimpd φ c R 𝑠 U PrimRoots K c R 𝑠 U PrimRoots K c Base R 𝑠 U K R 𝑠 U c = 0 R 𝑠 U l 0 l R 𝑠 U c = 0 R 𝑠 U K l
323 322 syldbl2 φ c R 𝑠 U PrimRoots K c Base R 𝑠 U K R 𝑠 U c = 0 R 𝑠 U l 0 l R 𝑠 U c = 0 R 𝑠 U K l
324 323 simp1d φ c R 𝑠 U PrimRoots K c Base R 𝑠 U
325 54 sselda φ c U c Base R
326 325 ex φ c U c Base R
327 57 eleq2d φ c U c Base R 𝑠 U
328 327 imbi1d φ c U c Base R c Base R 𝑠 U c Base R
329 326 328 mpbid φ c Base R 𝑠 U c Base R
330 329 adantr φ c R 𝑠 U PrimRoots K c Base R 𝑠 U c Base R
331 330 imp φ c R 𝑠 U PrimRoots K c Base R 𝑠 U c Base R
332 324 331 mpdan φ c R 𝑠 U PrimRoots K c Base R
333 284 adantr φ c R 𝑠 U PrimRoots K U SubMnd R
334 327 adantr φ c R 𝑠 U PrimRoots K c U c Base R 𝑠 U
335 324 334 mpbird φ c R 𝑠 U PrimRoots K c U
336 333 320 335 288 syl3anc φ c R 𝑠 U PrimRoots K K R c = K R 𝑠 U c
337 323 simp2d φ c R 𝑠 U PrimRoots K K R 𝑠 U c = 0 R 𝑠 U
338 238 adantr φ c R 𝑠 U PrimRoots K 0 R 𝑠 U = 0 R
339 336 337 338 3eqtrd φ c R 𝑠 U PrimRoots K K R c = 0 R
340 323 simp3d φ c R 𝑠 U PrimRoots K l 0 l R 𝑠 U c = 0 R 𝑠 U K l
341 333 adantr φ c R 𝑠 U PrimRoots K l 0 U SubMnd R
342 simpr φ c R 𝑠 U PrimRoots K l 0 l 0
343 335 adantr φ c R 𝑠 U PrimRoots K l 0 c U
344 341 342 343 300 syl3anc φ c R 𝑠 U PrimRoots K l 0 l R c = l R 𝑠 U c
345 344 eqcomd φ c R 𝑠 U PrimRoots K l 0 l R 𝑠 U c = l R c
346 338 adantr φ c R 𝑠 U PrimRoots K l 0 0 R 𝑠 U = 0 R
347 345 346 eqeq12d φ c R 𝑠 U PrimRoots K l 0 l R 𝑠 U c = 0 R 𝑠 U l R c = 0 R
348 347 imbi1d φ c R 𝑠 U PrimRoots K l 0 l R 𝑠 U c = 0 R 𝑠 U K l l R c = 0 R K l
349 348 ralbidva φ c R 𝑠 U PrimRoots K l 0 l R 𝑠 U c = 0 R 𝑠 U K l l 0 l R c = 0 R K l
350 340 349 mpbid φ c R 𝑠 U PrimRoots K l 0 l R c = 0 R K l
351 332 339 350 3jca φ c R 𝑠 U PrimRoots K c Base R K R c = 0 R l 0 l R c = 0 R K l
352 1 adantr φ c R 𝑠 U PrimRoots K R CMnd
353 352 320 7 isprimroot φ c R 𝑠 U PrimRoots K c R PrimRoots K c Base R K R c = 0 R l 0 l R c = 0 R K l
354 351 353 mpbird φ c R 𝑠 U PrimRoots K c R PrimRoots K
355 354 ex φ c R 𝑠 U PrimRoots K c R PrimRoots K
356 355 ssrdv φ R 𝑠 U PrimRoots K R PrimRoots K
357 318 356 eqssd φ R PrimRoots K = R 𝑠 U PrimRoots K
358 259 313 jca φ R 𝑠 U Grp R 𝑠 U CMnd
359 isabl R 𝑠 U Abel R 𝑠 U Grp R 𝑠 U CMnd
360 358 359 sylibr φ R 𝑠 U Abel
361 357 360 jca φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel