Metamath Proof Explorer


Theorem primrootsunit

Description: Primitive roots have left inverses. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses primrootsunit.1 φ R CMnd
primrootsunit.2 φ K
primrootsunit.3 U = a Base R | i Base R i + R a = 0 R
Assertion primrootsunit φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel

Proof

Step Hyp Ref Expression
1 primrootsunit.1 φ R CMnd
2 primrootsunit.2 φ K
3 primrootsunit.3 U = a Base R | i Base R i + R a = 0 R
4 nfv j i + R a = 0 R
5 nfv i j + R a = 0 R
6 oveq1 i = j i + R a = j + R a
7 6 eqeq1d i = j i + R a = 0 R j + R a = 0 R
8 4 5 7 cbvrexw i Base R i + R a = 0 R j Base R j + R a = 0 R
9 8 rabbii a Base R | i Base R i + R a = 0 R = a Base R | j Base R j + R a = 0 R
10 3 9 eqtri U = a Base R | j Base R j + R a = 0 R
11 1 2 10 primrootsunit1 φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel