Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Miscellaneous results for AKS formalisation
primrootsunit
Next ⟩
primrootscoprmpow
Metamath Proof Explorer
Ascii
Unicode
Theorem
primrootsunit
Description:
Primitive roots have left inverses.
(Contributed by
metakunt
, 25-Apr-2025)
Ref
Expression
Hypotheses
primrootsunit.1
⊢
φ
→
R
∈
CMnd
primrootsunit.2
⊢
φ
→
K
∈
ℕ
primrootsunit.3
⊢
U
=
a
∈
Base
R
|
∃
i
∈
Base
R
i
+
R
a
=
0
R
Assertion
primrootsunit
⊢
φ
→
R
PrimRoots
K
=
R
↾
𝑠
U
PrimRoots
K
∧
R
↾
𝑠
U
∈
Abel
Proof
Step
Hyp
Ref
Expression
1
primrootsunit.1
⊢
φ
→
R
∈
CMnd
2
primrootsunit.2
⊢
φ
→
K
∈
ℕ
3
primrootsunit.3
⊢
U
=
a
∈
Base
R
|
∃
i
∈
Base
R
i
+
R
a
=
0
R
4
nfv
⊢
Ⅎ
j
i
+
R
a
=
0
R
5
nfv
⊢
Ⅎ
i
j
+
R
a
=
0
R
6
oveq1
⊢
i
=
j
→
i
+
R
a
=
j
+
R
a
7
6
eqeq1d
⊢
i
=
j
→
i
+
R
a
=
0
R
↔
j
+
R
a
=
0
R
8
4
5
7
cbvrexw
⊢
∃
i
∈
Base
R
i
+
R
a
=
0
R
↔
∃
j
∈
Base
R
j
+
R
a
=
0
R
9
8
rabbii
⊢
a
∈
Base
R
|
∃
i
∈
Base
R
i
+
R
a
=
0
R
=
a
∈
Base
R
|
∃
j
∈
Base
R
j
+
R
a
=
0
R
10
3
9
eqtri
⊢
U
=
a
∈
Base
R
|
∃
j
∈
Base
R
j
+
R
a
=
0
R
11
1
2
10
primrootsunit1
⊢
φ
→
R
PrimRoots
K
=
R
↾
𝑠
U
PrimRoots
K
∧
R
↾
𝑠
U
∈
Abel