Step |
Hyp |
Ref |
Expression |
1 |
|
primrootsunit.1 |
|- ( ph -> R e. CMnd ) |
2 |
|
primrootsunit.2 |
|- ( ph -> K e. NN ) |
3 |
|
primrootsunit.3 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
4 |
|
nfv |
|- F/ j ( i ( +g ` R ) a ) = ( 0g ` R ) |
5 |
|
nfv |
|- F/ i ( j ( +g ` R ) a ) = ( 0g ` R ) |
6 |
|
oveq1 |
|- ( i = j -> ( i ( +g ` R ) a ) = ( j ( +g ` R ) a ) ) |
7 |
6
|
eqeq1d |
|- ( i = j -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( j ( +g ` R ) a ) = ( 0g ` R ) ) ) |
8 |
4 5 7
|
cbvrexw |
|- ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. j e. ( Base ` R ) ( j ( +g ` R ) a ) = ( 0g ` R ) ) |
9 |
8
|
rabbii |
|- { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } = { a e. ( Base ` R ) | E. j e. ( Base ` R ) ( j ( +g ` R ) a ) = ( 0g ` R ) } |
10 |
3 9
|
eqtri |
|- U = { a e. ( Base ` R ) | E. j e. ( Base ` R ) ( j ( +g ` R ) a ) = ( 0g ` R ) } |
11 |
1 2 10
|
primrootsunit1 |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |