| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primrootsunit.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 2 |
|
primrootsunit.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
primrootsunit.3 |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
| 4 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) |
| 6 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ) ) |
| 8 |
4 5 7
|
cbvrexw |
⊢ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
| 9 |
8
|
rabbii |
⊢ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
| 10 |
3 9
|
eqtri |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
| 11 |
1 2 10
|
primrootsunit1 |
⊢ ( 𝜑 → ( ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ∧ ( 𝑅 ↾s 𝑈 ) ∈ Abel ) ) |