| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primrootsunit1.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 2 |
|
primrootsunit1.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
primrootsunit1.3 |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑅 ∈ CMnd ) |
| 5 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
| 7 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 8 |
4 6 7
|
isprimroot |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 9 |
8
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 10 |
9
|
syldbl2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
| 11 |
10
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
1
|
cmnmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑅 ∈ Mnd ) |
| 14 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 18 |
17 7
|
mulgnn0cl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐾 − 1 ) ∈ ℕ0 ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ∈ ( Base ‘ 𝑅 ) ) |
| 19 |
13 16 11 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) → 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 23 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 24 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 25 |
23 24
|
npcand |
⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝜑 → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
| 28 |
27
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) + 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) |
| 29 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 30 |
17 7 29
|
mulgnn0p1 |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐾 − 1 ) ∈ ℕ0 ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐾 − 1 ) + 1 ) ( .g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) ) |
| 31 |
13 16 11 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( ( 𝐾 − 1 ) + 1 ) ( .g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) ) |
| 32 |
28 31
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) ) |
| 33 |
10
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 34 |
32 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 35 |
19 22 34
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 36 |
11 35
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 37 |
|
oveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) ) |
| 38 |
37
|
eqeq1d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 39 |
38
|
rexbidv |
⊢ ( 𝑎 = 𝑐 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 40 |
39
|
elrab |
⊢ ( 𝑐 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 41 |
36 40
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 42 |
3
|
eleq2i |
⊢ ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 43 |
41 42
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ 𝑈 ) |
| 44 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝜑 ) |
| 45 |
3
|
a1i |
⊢ ( 𝜑 → 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 46 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 47 |
46
|
biimpd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 → 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 48 |
47
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 49 |
44 48
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 50 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 52 |
49 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 53 |
52
|
ex |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 54 |
53
|
ssrdv |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑅 ) ) |
| 55 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑈 ) = ( 𝑅 ↾s 𝑈 ) |
| 56 |
55 17
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 57 |
54 56
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 59 |
58
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 60 |
43 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 61 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑅 ∈ Mnd ) |
| 62 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 63 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → 𝜑 ) |
| 64 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝑈 ↔ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 65 |
64
|
biimpd |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝑈 → 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 66 |
65
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 67 |
63 66
|
jca |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → ( 𝜑 ∧ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 68 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
| 70 |
67 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
| 71 |
44 70
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
| 72 |
17 29
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 73 |
61 62 71 72
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 74 |
3
|
eleq2i |
⊢ ( 𝑑 ∈ 𝑈 ↔ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 75 |
|
oveq2 |
⊢ ( 𝑎 = 𝑑 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 76 |
75
|
eqeq1d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 77 |
76
|
rexbidv |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 78 |
77
|
elrab |
⊢ ( 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 79 |
74 78
|
bitri |
⊢ ( 𝑑 ∈ 𝑈 ↔ ( 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 80 |
79
|
biimpi |
⊢ ( 𝑑 ∈ 𝑈 → ( 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 81 |
80
|
simprd |
⊢ ( 𝑑 ∈ 𝑈 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 82 |
81
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 83 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ CMnd ) |
| 84 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
| 85 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → 𝑖 ∈ ( Base ‘ 𝑅 ) ) |
| 86 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 87 |
83 84 85 86
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 88 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 89 |
87 88
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
| 90 |
89
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 91 |
90
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 92 |
82 91
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
| 93 |
17 61 71 92
|
mndmolinv |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 94 |
82 93
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 95 |
|
reu5 |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ↔ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 96 |
94 95
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 97 |
|
riotacl |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 |
96 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 99 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 100 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 101 |
17 29 99 100
|
grpinvval |
⊢ ( 𝑑 ∈ ( Base ‘ 𝑅 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 102 |
71 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
| 103 |
102
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 104 |
98 103
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 105 |
3
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 106 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 107 |
106
|
eqeq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 108 |
107
|
rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 109 |
108
|
elrab |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 110 |
105 109
|
bitri |
⊢ ( 𝑏 ∈ 𝑈 ↔ ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 111 |
110
|
biimpi |
⊢ ( 𝑏 ∈ 𝑈 → ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 112 |
111
|
simprd |
⊢ ( 𝑏 ∈ 𝑈 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
| 113 |
112
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
| 114 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ CMnd ) |
| 115 |
62
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 116 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → 𝑖 ∈ ( Base ‘ 𝑅 ) ) |
| 117 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 118 |
114 115 116 117
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 119 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
| 120 |
118 119
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
| 121 |
120
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 122 |
121
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 123 |
113 122
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
| 124 |
17 61 62 123
|
mndmolinv |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
| 125 |
113 124
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 126 |
|
reu5 |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ↔ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 127 |
125 126
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
| 128 |
|
riotacl |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 129 |
127 128
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 130 |
17 29 99 100
|
grpinvval |
⊢ ( 𝑏 ∈ ( Base ‘ 𝑅 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 131 |
62 130
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
| 132 |
131
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 133 |
129 132
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 134 |
17 29
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 135 |
61 104 133 134
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 136 |
|
oveq1 |
⊢ ( 𝑖 = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 137 |
136
|
eqeq1d |
⊢ ( 𝑖 = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 138 |
137
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 139 |
104 133 73
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 140 |
17 29
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) ) |
| 141 |
61 139 140
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) ) |
| 142 |
133 62 71
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) ) |
| 143 |
17 29
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 144 |
143
|
eqcomd |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 145 |
61 142 144
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 146 |
145
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 147 |
62 127
|
linvh |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
| 148 |
147
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 149 |
148
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 150 |
17 29 99
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) = 𝑑 ) |
| 151 |
61 71 150
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) = 𝑑 ) |
| 152 |
151
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
| 153 |
71 96
|
linvh |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 154 |
152 153
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
| 155 |
149 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
| 156 |
146 155
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 157 |
141 156
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
| 158 |
135 138 157
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
| 159 |
73 158
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 160 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 161 |
160
|
eqeq1d |
⊢ ( 𝑎 = ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 162 |
161
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 163 |
162
|
elrab |
⊢ ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 164 |
159 163
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 165 |
3
|
eleq2i |
⊢ ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 166 |
165
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 167 |
164 166
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
| 168 |
167
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
| 169 |
168
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
| 170 |
|
oveq2 |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 171 |
170
|
eqeq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 172 |
171
|
rexbidv |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 173 |
17 99
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 174 |
12 173
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 175 |
12 174
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 176 |
17 29 99
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 177 |
175 176
|
syl |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 178 |
174 177
|
jca |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 179 |
|
oveq1 |
⊢ ( 𝑖 = ( 0g ‘ 𝑅 ) → ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 180 |
179
|
eqeq1d |
⊢ ( 𝑖 = ( 0g ‘ 𝑅 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 181 |
180
|
rspcev |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 182 |
178 181
|
syl |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 183 |
172 174 182
|
elrabd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 184 |
45
|
eleq2d |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ∈ 𝑈 ↔ ( 0g ‘ 𝑅 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 185 |
183 184
|
mpbird |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝑈 ) |
| 186 |
17 29 99 55
|
issubmnd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) → ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ↔ ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) ) |
| 187 |
12 54 185 186
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ↔ ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) ) |
| 188 |
169 187
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) |
| 189 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 ↔ 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 190 |
189
|
biimpd |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 → 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
| 191 |
190
|
imp |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 192 |
|
oveq2 |
⊢ ( 𝑎 = 𝑞 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) ) |
| 193 |
192
|
eqeq1d |
⊢ ( 𝑎 = 𝑞 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
| 194 |
193
|
rexbidv |
⊢ ( 𝑎 = 𝑞 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
| 195 |
194
|
elrab |
⊢ ( 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
| 196 |
191 195
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
| 197 |
196
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) |
| 198 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑖 ∈ ( Base ‘ 𝑅 ) ) |
| 199 |
196
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
| 200 |
199
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
| 201 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑗 = 𝑞 ) → 𝑗 = 𝑞 ) |
| 202 |
201
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑗 = 𝑞 ) → ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) ) |
| 203 |
202
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑗 = 𝑞 ) → ( ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 204 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑅 ∈ CMnd ) |
| 205 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ 𝑞 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) ) |
| 206 |
204 198 200 205
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) ) |
| 207 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) |
| 208 |
206 207
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
| 209 |
200 203 208
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
| 210 |
198 209
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 211 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) |
| 212 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) |
| 213 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) ) |
| 214 |
213
|
eqeq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ) ) |
| 215 |
211 212 214
|
cbvrexw |
⊢ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
| 216 |
215
|
rabbii |
⊢ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
| 217 |
3 216
|
eqtri |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
| 218 |
217
|
eleq2i |
⊢ ( 𝑖 ∈ 𝑈 ↔ 𝑖 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
| 219 |
|
oveq2 |
⊢ ( 𝑎 = 𝑖 → ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) ) |
| 220 |
219
|
eqeq1d |
⊢ ( 𝑎 = 𝑖 → ( ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 221 |
220
|
rexbidv |
⊢ ( 𝑎 = 𝑖 → ( ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 222 |
221
|
elrab |
⊢ ( 𝑖 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 223 |
218 222
|
bitri |
⊢ ( 𝑖 ∈ 𝑈 ↔ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
| 224 |
210 223
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑖 ∈ 𝑈 ) |
| 225 |
197 224 207
|
reximssdv |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑖 ∈ 𝑈 ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) |
| 226 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
| 227 |
3 226
|
rabexd |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 228 |
55 29
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 229 |
227 228
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 230 |
229
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ 𝑅 ) ) |
| 231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ 𝑅 ) ) |
| 232 |
231
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ 𝑅 ) ) |
| 233 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → 𝑤 = 𝑖 ) |
| 234 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → 𝑞 = 𝑞 ) |
| 235 |
232 233 234
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) ) |
| 236 |
55 17 99
|
ress0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 237 |
12 185 54 236
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 238 |
237
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
| 239 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
| 240 |
239
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
| 241 |
235 240
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
| 242 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → 𝑈 = 𝑈 ) |
| 243 |
241 242
|
cbvrexdva2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( ∃ 𝑤 ∈ 𝑈 ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ∃ 𝑖 ∈ 𝑈 ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
| 244 |
225 243
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 245 |
57
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = 𝑈 ) |
| 246 |
245
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = 𝑈 ) |
| 247 |
244 246
|
rexeqtrrdv |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 248 |
247
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 249 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 ↔ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 250 |
249
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑞 ∈ 𝑈 → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ↔ ( 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) ) |
| 251 |
248 250
|
mpbid |
⊢ ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 252 |
251
|
imp |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 253 |
252
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 254 |
188 253
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ∧ ∀ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 255 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) |
| 256 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) |
| 257 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) |
| 258 |
255 256 257
|
isgrp |
⊢ ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ↔ ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ∧ ∀ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 259 |
254 258
|
sylibr |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
| 260 |
259
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
| 261 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ 𝑈 ) |
| 262 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 263 |
262
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 264 |
263
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 265 |
261 264
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 266 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ 𝑈 ) |
| 267 |
263
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑑 ∈ 𝑈 ↔ 𝑑 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 268 |
266 267
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 269 |
255 256
|
grpcl |
⊢ ( ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ 𝑏 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ 𝑑 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 270 |
260 265 268 269
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 271 |
263
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 272 |
270 271
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ 𝑈 ) |
| 273 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 274 |
273
|
oveqdr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) = ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ) |
| 275 |
274
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ 𝑈 ) ) |
| 276 |
272 275
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
| 277 |
276
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
| 278 |
277
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
| 279 |
278 187
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) |
| 280 |
12 279
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Mnd ∧ ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) ) |
| 281 |
54 185
|
jca |
⊢ ( 𝜑 → ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 282 |
280 281
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ∈ Mnd ∧ ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) ∧ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) ) ) |
| 283 |
17 99
|
issubmndb |
⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Mnd ∧ ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) ∧ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) ) ) |
| 284 |
282 283
|
sylibr |
⊢ ( 𝜑 → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 285 |
284
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 286 |
285 6 43
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) ) |
| 287 |
|
eqid |
⊢ ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) |
| 288 |
7 55 287
|
submmulg |
⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
| 289 |
288
|
eqcomd |
⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) ) |
| 290 |
286 289
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) ) |
| 291 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
| 292 |
290 291
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 293 |
33 292
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 294 |
10
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
| 295 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ℕ0 = ℕ0 ) |
| 296 |
285
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 297 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
| 298 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑐 ∈ 𝑈 ) |
| 299 |
296 297 298
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝑙 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) ) |
| 300 |
7 55 287
|
submmulg |
⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝑙 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) → ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
| 301 |
299 300
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
| 302 |
237
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 303 |
301 302
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 304 |
303
|
imbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
| 305 |
295 304
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
| 306 |
294 305
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) |
| 307 |
60 293 306
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
| 308 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → 𝑅 ∈ CMnd ) |
| 309 |
62
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 310 |
71
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
| 311 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 312 |
308 309 310 311
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 313 |
57 229 279 312
|
iscmnd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) |
| 314 |
313 5 287
|
isprimroot |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 315 |
314
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 316 |
307 315
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
| 317 |
316
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) → 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ) |
| 318 |
317
|
ssrdv |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) ⊆ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
| 319 |
313
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) |
| 320 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
| 321 |
319 320 287
|
isprimroot |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 322 |
321
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 323 |
322
|
syldbl2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
| 324 |
323
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 325 |
54
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑈 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
| 326 |
325
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑈 → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 327 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 328 |
327
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑐 ∈ 𝑈 → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 329 |
326 328
|
mpbid |
⊢ ( 𝜑 → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 330 |
329
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 331 |
330
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
| 332 |
324 331
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
| 333 |
284
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 334 |
327
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 335 |
324 334
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ 𝑈 ) |
| 336 |
333 320 335 288
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
| 337 |
323
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 338 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
| 339 |
336 337 338
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 340 |
323
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) |
| 341 |
333
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 342 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
| 343 |
335
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑐 ∈ 𝑈 ) |
| 344 |
341 342 343 300
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
| 345 |
344
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) ) |
| 346 |
338
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
| 347 |
345 346
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 348 |
347
|
imbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
| 349 |
348
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
| 350 |
340 349
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
| 351 |
332 339 350
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
| 352 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑅 ∈ CMnd ) |
| 353 |
352 320 7
|
isprimroot |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
| 354 |
351 353
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
| 355 |
354
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) → 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ) |
| 356 |
355
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ⊆ ( 𝑅 PrimRoots 𝐾 ) ) |
| 357 |
318 356
|
eqssd |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
| 358 |
259 313
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) ) |
| 359 |
|
isabl |
⊢ ( ( 𝑅 ↾s 𝑈 ) ∈ Abel ↔ ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) ) |
| 360 |
358 359
|
sylibr |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Abel ) |
| 361 |
357 360
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ∧ ( 𝑅 ↾s 𝑈 ) ∈ Abel ) ) |