Step |
Hyp |
Ref |
Expression |
1 |
|
primrootsunit1.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
primrootsunit1.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
primrootsunit1.3 |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑅 ∈ CMnd ) |
5 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
7 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
8 |
4 6 7
|
isprimroot |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
10 |
9
|
syldbl2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
11 |
10
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
12 |
1
|
cmnmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑅 ∈ Mnd ) |
14 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 − 1 ) ∈ ℕ0 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
18 |
17 7
|
mulgnn0cl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐾 − 1 ) ∈ ℕ0 ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
13 16 11 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ∈ ( Base ‘ 𝑅 ) ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) → 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) ) |
22 |
21
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑖 = ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
23 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
24 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
25 |
23 24
|
npcand |
⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
26 |
25
|
eqcomd |
⊢ ( 𝜑 → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) + 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ) |
29 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
30 |
17 7 29
|
mulgnn0p1 |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐾 − 1 ) ∈ ℕ0 ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐾 − 1 ) + 1 ) ( .g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) ) |
31 |
13 16 11 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( ( 𝐾 − 1 ) + 1 ) ( .g ‘ 𝑅 ) 𝑐 ) = ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) ) |
32 |
28 31
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) ) |
33 |
10
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
34 |
32 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( ( 𝐾 − 1 ) ( .g ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
35 |
19 22 34
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
36 |
11 35
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
37 |
|
oveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
39 |
38
|
rexbidv |
⊢ ( 𝑎 = 𝑐 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
40 |
39
|
elrab |
⊢ ( 𝑐 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
41 |
36 40
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
42 |
3
|
eleq2i |
⊢ ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ 𝑈 ) |
44 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝜑 ) |
45 |
3
|
a1i |
⊢ ( 𝜑 → 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
46 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
47 |
46
|
biimpd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 → 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
48 |
47
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
49 |
44 48
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
50 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
52 |
49 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
53 |
52
|
ex |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
54 |
53
|
ssrdv |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑅 ) ) |
55 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑈 ) = ( 𝑅 ↾s 𝑈 ) |
56 |
55 17
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
57 |
54 56
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
59 |
58
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
60 |
43 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
61 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑅 ∈ Mnd ) |
62 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
63 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → 𝜑 ) |
64 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝑈 ↔ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
65 |
64
|
biimpd |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝑈 → 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
66 |
65
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
67 |
63 66
|
jca |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → ( 𝜑 ∧ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
68 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
70 |
67 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
71 |
44 70
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
72 |
17 29
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
73 |
61 62 71 72
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
74 |
3
|
eleq2i |
⊢ ( 𝑑 ∈ 𝑈 ↔ 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
75 |
|
oveq2 |
⊢ ( 𝑎 = 𝑑 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) ) |
76 |
75
|
eqeq1d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
77 |
76
|
rexbidv |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
78 |
77
|
elrab |
⊢ ( 𝑑 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
79 |
74 78
|
bitri |
⊢ ( 𝑑 ∈ 𝑈 ↔ ( 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
80 |
79
|
biimpi |
⊢ ( 𝑑 ∈ 𝑈 → ( 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
81 |
80
|
simprd |
⊢ ( 𝑑 ∈ 𝑈 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
82 |
81
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
83 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ CMnd ) |
84 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
85 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → 𝑖 ∈ ( Base ‘ 𝑅 ) ) |
86 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) ) |
87 |
83 84 85 86
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) ) |
88 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
89 |
87 88
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
90 |
89
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) → ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
91 |
90
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
92 |
82 91
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑑 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
93 |
17 61 71 92
|
mndmolinv |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
94 |
82 93
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
95 |
|
reu5 |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ↔ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
96 |
94 95
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
97 |
|
riotacl |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
98 |
96 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
99 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
100 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
101 |
17 29 99 100
|
grpinvval |
⊢ ( 𝑑 ∈ ( Base ‘ 𝑅 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
102 |
71 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
103 |
102
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
104 |
98 103
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
105 |
3
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
106 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) ) |
107 |
106
|
eqeq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
108 |
107
|
rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
109 |
108
|
elrab |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
110 |
105 109
|
bitri |
⊢ ( 𝑏 ∈ 𝑈 ↔ ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
111 |
110
|
biimpi |
⊢ ( 𝑏 ∈ 𝑈 → ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
112 |
111
|
simprd |
⊢ ( 𝑏 ∈ 𝑈 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
113 |
112
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
114 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ CMnd ) |
115 |
62
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
116 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → 𝑖 ∈ ( Base ‘ 𝑅 ) ) |
117 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) ) |
118 |
114 115 116 117
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) ) |
119 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
120 |
118 119
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
121 |
120
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
122 |
121
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
123 |
113 122
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
124 |
17 61 62 123
|
mndmolinv |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
125 |
113 124
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
126 |
|
reu5 |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ↔ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ∧ ∃* 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
127 |
125 126
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
128 |
|
riotacl |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
129 |
127 128
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
130 |
17 29 99 100
|
grpinvval |
⊢ ( 𝑏 ∈ ( Base ‘ 𝑅 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
131 |
62 130
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
132 |
131
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
133 |
129 132
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
134 |
17 29
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
135 |
61 104 133 134
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
136 |
|
oveq1 |
⊢ ( 𝑖 = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
137 |
136
|
eqeq1d |
⊢ ( 𝑖 = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
138 |
137
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) ∧ 𝑖 = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ) → ( ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
139 |
104 133 73
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) ) |
140 |
17 29
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) ) |
141 |
61 139 140
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) ) |
142 |
133 62 71
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) ) |
143 |
17 29
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
144 |
143
|
eqcomd |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
145 |
61 142 144
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
146 |
145
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
147 |
62 127
|
linvh |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
148 |
147
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
149 |
148
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
150 |
17 29 99
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) = 𝑑 ) |
151 |
61 71 150
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) = 𝑑 ) |
152 |
151
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) 𝑑 ) ) |
153 |
71 96
|
linvh |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
154 |
152 153
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
155 |
149 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
156 |
146 155
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) = ( 0g ‘ 𝑅 ) ) |
157 |
141 156
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
158 |
135 138 157
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
159 |
73 158
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
160 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
161 |
160
|
eqeq1d |
⊢ ( 𝑎 = ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
162 |
161
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
163 |
162
|
elrab |
⊢ ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) ) |
164 |
159 163
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
165 |
3
|
eleq2i |
⊢ ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
166 |
165
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
167 |
164 166
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
168 |
167
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
169 |
168
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
170 |
|
oveq2 |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
171 |
170
|
eqeq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
172 |
171
|
rexbidv |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
173 |
17 99
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
174 |
12 173
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
175 |
12 174
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
176 |
17 29 99
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
177 |
175 176
|
syl |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
178 |
174 177
|
jca |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
179 |
|
oveq1 |
⊢ ( 𝑖 = ( 0g ‘ 𝑅 ) → ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
180 |
179
|
eqeq1d |
⊢ ( 𝑖 = ( 0g ‘ 𝑅 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
181 |
180
|
rspcev |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
182 |
178 181
|
syl |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
183 |
172 174 182
|
elrabd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
184 |
45
|
eleq2d |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ∈ 𝑈 ↔ ( 0g ‘ 𝑅 ) ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
185 |
183 184
|
mpbird |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝑈 ) |
186 |
17 29 99 55
|
issubmnd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) → ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ↔ ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) ) |
187 |
12 54 185 186
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ↔ ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) ) |
188 |
169 187
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) |
189 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 ↔ 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
190 |
189
|
biimpd |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 → 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) ) |
191 |
190
|
imp |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
192 |
|
oveq2 |
⊢ ( 𝑎 = 𝑞 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) ) |
193 |
192
|
eqeq1d |
⊢ ( 𝑎 = 𝑞 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
194 |
193
|
rexbidv |
⊢ ( 𝑎 = 𝑞 → ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
195 |
194
|
elrab |
⊢ ( 𝑞 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
196 |
191 195
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
197 |
196
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) |
198 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑖 ∈ ( Base ‘ 𝑅 ) ) |
199 |
196
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
200 |
199
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
201 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑗 = 𝑞 ) → 𝑗 = 𝑞 ) |
202 |
201
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑗 = 𝑞 ) → ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) ) |
203 |
202
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑗 = 𝑞 ) → ( ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
204 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑅 ∈ CMnd ) |
205 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ 𝑞 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) ) |
206 |
204 198 200 205
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) ) |
207 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) |
208 |
206 207
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
209 |
200 203 208
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
210 |
198 209
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
211 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) |
212 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) |
213 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) ) |
214 |
213
|
eqeq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ) ) |
215 |
211 212 214
|
cbvrexw |
⊢ ( ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
216 |
215
|
rabbii |
⊢ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
217 |
3 216
|
eqtri |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
218 |
217
|
eleq2i |
⊢ ( 𝑖 ∈ 𝑈 ↔ 𝑖 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ) |
219 |
|
oveq2 |
⊢ ( 𝑎 = 𝑖 → ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) ) |
220 |
219
|
eqeq1d |
⊢ ( 𝑎 = 𝑖 → ( ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
221 |
220
|
rexbidv |
⊢ ( 𝑎 = 𝑖 → ( ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
222 |
221
|
elrab |
⊢ ( 𝑖 ∈ { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } ↔ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
223 |
218 222
|
bitri |
⊢ ( 𝑖 ∈ 𝑈 ↔ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑗 ∈ ( Base ‘ 𝑅 ) ( 𝑗 ( +g ‘ 𝑅 ) 𝑖 ) = ( 0g ‘ 𝑅 ) ) ) |
224 |
210 223
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝑖 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) → 𝑖 ∈ 𝑈 ) |
225 |
197 224 207
|
reximssdv |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑖 ∈ 𝑈 ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) |
226 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
227 |
3 226
|
rabexd |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
228 |
55 29
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
229 |
227 228
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
230 |
229
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ 𝑅 ) ) |
231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ 𝑅 ) ) |
232 |
231
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ 𝑅 ) ) |
233 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → 𝑤 = 𝑖 ) |
234 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → 𝑞 = 𝑞 ) |
235 |
232 233 234
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) ) |
236 |
55 17 99
|
ress0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
237 |
12 185 54 236
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
238 |
237
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
239 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
240 |
239
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
241 |
235 240
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → ( ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
242 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) ∧ 𝑤 = 𝑖 ) → 𝑈 = 𝑈 ) |
243 |
241 242
|
cbvrexdva2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( ∃ 𝑤 ∈ 𝑈 ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ∃ 𝑖 ∈ 𝑈 ( 𝑖 ( +g ‘ 𝑅 ) 𝑞 ) = ( 0g ‘ 𝑅 ) ) ) |
244 |
225 243
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
245 |
57
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = 𝑈 ) |
246 |
245
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = 𝑈 ) |
247 |
244 246
|
rexeqtrrdv |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑈 ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
248 |
247
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
249 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑈 ↔ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
250 |
249
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑞 ∈ 𝑈 → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ↔ ( 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) ) |
251 |
248 250
|
mpbid |
⊢ ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
252 |
251
|
imp |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
253 |
252
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
254 |
188 253
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ∧ ∀ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
255 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) |
256 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) |
257 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) |
258 |
255 256 257
|
isgrp |
⊢ ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ↔ ( ( 𝑅 ↾s 𝑈 ) ∈ Mnd ∧ ∀ 𝑞 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∃ 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑤 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑞 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
259 |
254 258
|
sylibr |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
260 |
259
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
261 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ 𝑈 ) |
262 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
263 |
262
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑈 = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
264 |
263
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
265 |
261 264
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
266 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ 𝑈 ) |
267 |
263
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑑 ∈ 𝑈 ↔ 𝑑 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
268 |
266 267
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
269 |
255 256
|
grpcl |
⊢ ( ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ 𝑏 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ 𝑑 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
270 |
260 265 268 269
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
271 |
263
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
272 |
270 271
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ 𝑈 ) |
273 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
274 |
273
|
oveqdr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) = ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ) |
275 |
274
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ↔ ( 𝑏 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑑 ) ∈ 𝑈 ) ) |
276 |
272 275
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
277 |
276
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
278 |
277
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝑈 ∀ 𝑑 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) ∈ 𝑈 ) |
279 |
278 187
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) |
280 |
12 279
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Mnd ∧ ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) ) |
281 |
54 185
|
jca |
⊢ ( 𝜑 → ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) ) |
282 |
280 281
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ∈ Mnd ∧ ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) ∧ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) ) ) |
283 |
17 99
|
issubmndb |
⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Mnd ∧ ( 𝑅 ↾s 𝑈 ) ∈ Mnd ) ∧ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) ) ) |
284 |
282 283
|
sylibr |
⊢ ( 𝜑 → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
285 |
284
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
286 |
285 6 43
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) ) |
287 |
|
eqid |
⊢ ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) |
288 |
7 55 287
|
submmulg |
⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
289 |
288
|
eqcomd |
⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) ) |
290 |
286 289
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) ) |
291 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
292 |
290 291
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
293 |
33 292
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
294 |
10
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
295 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ℕ0 = ℕ0 ) |
296 |
285
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
297 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
298 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑐 ∈ 𝑈 ) |
299 |
296 297 298
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝑙 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) ) |
300 |
7 55 287
|
submmulg |
⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ∧ 𝑙 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈 ) → ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
301 |
299 300
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
302 |
237
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
303 |
301 302
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
304 |
303
|
imbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
305 |
295 304
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
306 |
294 305
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) |
307 |
60 293 306
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
308 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → 𝑅 ∈ CMnd ) |
309 |
62
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
310 |
71
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → 𝑑 ∈ ( Base ‘ 𝑅 ) ) |
311 |
17 29
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑑 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑅 ) 𝑏 ) ) |
312 |
308 309 310 311
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝑅 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑅 ) 𝑏 ) ) |
313 |
57 229 279 312
|
iscmnd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) |
314 |
313 5 287
|
isprimroot |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
315 |
314
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
316 |
307 315
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
317 |
316
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) → 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ) |
318 |
317
|
ssrdv |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) ⊆ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
319 |
313
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) |
320 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
321 |
319 320 287
|
isprimroot |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
322 |
321
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
323 |
322
|
syldbl2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
324 |
323
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
325 |
54
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑈 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
326 |
325
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑈 → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
327 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
328 |
327
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑐 ∈ 𝑈 → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ↔ ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
329 |
326 328
|
mpbid |
⊢ ( 𝜑 → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
330 |
329
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
331 |
330
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
332 |
324 331
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
333 |
284
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
334 |
327
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ 𝑈 ↔ 𝑐 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
335 |
324 334
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ 𝑈 ) |
336 |
333 320 335 288
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
337 |
323
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
338 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
339 |
336 337 338
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
340 |
323
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) |
341 |
333
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑈 ∈ ( SubMnd ‘ 𝑅 ) ) |
342 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
343 |
335
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → 𝑐 ∈ 𝑈 ) |
344 |
341 342 343 300
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) ) |
345 |
344
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) ) |
346 |
338
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ 𝑅 ) ) |
347 |
345 346
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
348 |
347
|
imbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
349 |
348
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ↔ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
350 |
340 349
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
351 |
332 339 350
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
352 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑅 ∈ CMnd ) |
353 |
352 320 7
|
isprimroot |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → ( 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑐 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
354 |
351 353
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) → 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
355 |
354
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) → 𝑐 ∈ ( 𝑅 PrimRoots 𝐾 ) ) ) |
356 |
355
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ⊆ ( 𝑅 PrimRoots 𝐾 ) ) |
357 |
318 356
|
eqssd |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
358 |
259 313
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) ) |
359 |
|
isabl |
⊢ ( ( 𝑅 ↾s 𝑈 ) ∈ Abel ↔ ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) ) |
360 |
358 359
|
sylibr |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Abel ) |
361 |
357 360
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ∧ ( 𝑅 ↾s 𝑈 ) ∈ Abel ) ) |