| Step |
Hyp |
Ref |
Expression |
| 1 |
|
linvh.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 2 |
|
linvh.2 |
⊢ ( 𝜑 → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 7 |
3 4 5 6
|
grpinvval |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑅 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
| 9 |
|
riotacl2 |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ) |
| 11 |
8 10
|
eqeltrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ) |
| 12 |
|
oveq1 |
⊢ ( 𝑖 = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝑖 = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
| 14 |
13
|
elrab |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
| 15 |
14
|
simprbi |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } → ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
11 15
|
syl |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |