Metamath Proof Explorer


Theorem linvh

Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses linvh.1 ( 𝜑𝑋 ∈ ( Base ‘ 𝑅 ) )
linvh.2 ( 𝜑 → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) )
Assertion linvh ( 𝜑 → ( ( ( invg𝑅 ) ‘ 𝑋 ) ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) )

Proof

Step Hyp Ref Expression
1 linvh.1 ( 𝜑𝑋 ∈ ( Base ‘ 𝑅 ) )
2 linvh.2 ( 𝜑 → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 eqid ( +g𝑅 ) = ( +g𝑅 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 eqid ( invg𝑅 ) = ( invg𝑅 )
7 3 4 5 6 grpinvval ( 𝑋 ∈ ( Base ‘ 𝑅 ) → ( ( invg𝑅 ) ‘ 𝑋 ) = ( 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ) )
8 1 7 syl ( 𝜑 → ( ( invg𝑅 ) ‘ 𝑋 ) = ( 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ) )
9 riotacl2 ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) → ( 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) } )
10 2 9 syl ( 𝜑 → ( 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) } )
11 8 10 eqeltrd ( 𝜑 → ( ( invg𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) } )
12 oveq1 ( 𝑖 = ( ( invg𝑅 ) ‘ 𝑋 ) → ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( ( ( invg𝑅 ) ‘ 𝑋 ) ( +g𝑅 ) 𝑋 ) )
13 12 eqeq1d ( 𝑖 = ( ( invg𝑅 ) ‘ 𝑋 ) → ( ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ↔ ( ( ( invg𝑅 ) ‘ 𝑋 ) ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ) )
14 13 elrab ( ( ( invg𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) } ↔ ( ( ( invg𝑅 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( ( invg𝑅 ) ‘ 𝑋 ) ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) ) )
15 14 simprbi ( ( ( invg𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) } → ( ( ( invg𝑅 ) ‘ 𝑋 ) ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) )
16 11 15 syl ( 𝜑 → ( ( ( invg𝑅 ) ‘ 𝑋 ) ( +g𝑅 ) 𝑋 ) = ( 0g𝑅 ) )