Step |
Hyp |
Ref |
Expression |
1 |
|
linvh.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
2 |
|
linvh.2 |
⊢ ( 𝜑 → ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
7 |
3 4 5 6
|
grpinvval |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑅 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) = ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
9 |
|
riotacl2 |
⊢ ( ∃! 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ) |
11 |
8 10
|
eqeltrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ) |
12 |
|
oveq1 |
⊢ ( 𝑖 = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑖 = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) → ( ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
14 |
13
|
elrab |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
15 |
14
|
simprbi |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ { 𝑖 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑖 ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) } → ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
16 |
11 15
|
syl |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |