| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primrootscoprmpow.1 |
|- ( ph -> R e. CMnd ) |
| 2 |
|
primrootscoprmpow.2 |
|- ( ph -> K e. NN ) |
| 3 |
|
primrootscoprmpow.3 |
|- ( ph -> E e. NN ) |
| 4 |
|
primrootscoprmpow.4 |
|- ( ph -> ( E gcd K ) = 1 ) |
| 5 |
|
primrootscoprmpow.5 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
| 6 |
|
primrootscoprmpow.6 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
| 7 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
| 8 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
| 9 |
1 2 6
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
| 10 |
9
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
| 11 |
10
|
ablcmnd |
|- ( ph -> ( R |`s U ) e. CMnd ) |
| 12 |
11
|
cmnmndd |
|- ( ph -> ( R |`s U ) e. Mnd ) |
| 13 |
3
|
nnnn0d |
|- ( ph -> E e. NN0 ) |
| 14 |
9
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
| 15 |
14
|
eleq2d |
|- ( ph -> ( M e. ( R PrimRoots K ) <-> M e. ( ( R |`s U ) PrimRoots K ) ) ) |
| 16 |
5 15
|
mpbid |
|- ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) |
| 17 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 18 |
11 17 8
|
isprimroot |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 19 |
18
|
biimpd |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 20 |
16 19
|
mpd |
|- ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 21 |
20
|
simp1d |
|- ( ph -> M e. ( Base ` ( R |`s U ) ) ) |
| 22 |
7 8 12 13 21
|
mulgnn0cld |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
| 23 |
6
|
eleq2i |
|- ( c e. U <-> c e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
| 24 |
|
oveq2 |
|- ( a = c -> ( i ( +g ` R ) a ) = ( i ( +g ` R ) c ) ) |
| 25 |
24
|
eqeq1d |
|- ( a = c -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
| 26 |
25
|
rexbidv |
|- ( a = c -> ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
| 27 |
26
|
elrab |
|- ( c e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } <-> ( c e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
| 28 |
23 27
|
bitri |
|- ( c e. U <-> ( c e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
| 29 |
28
|
biimpi |
|- ( c e. U -> ( c e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
| 30 |
29
|
simpld |
|- ( c e. U -> c e. ( Base ` R ) ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ c e. U ) -> c e. ( Base ` R ) ) |
| 32 |
31
|
ex |
|- ( ph -> ( c e. U -> c e. ( Base ` R ) ) ) |
| 33 |
32
|
ssrdv |
|- ( ph -> U C_ ( Base ` R ) ) |
| 34 |
|
oveq2 |
|- ( a = ( 0g ` R ) -> ( i ( +g ` R ) a ) = ( i ( +g ` R ) ( 0g ` R ) ) ) |
| 35 |
34
|
eqeq1d |
|- ( a = ( 0g ` R ) -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 36 |
35
|
rexbidv |
|- ( a = ( 0g ` R ) -> ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. i e. ( Base ` R ) ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 37 |
1
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
| 38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 39 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 40 |
38 39
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 41 |
37 40
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 42 |
|
simpr |
|- ( ( ph /\ i = ( 0g ` R ) ) -> i = ( 0g ` R ) ) |
| 43 |
42
|
oveq1d |
|- ( ( ph /\ i = ( 0g ` R ) ) -> ( i ( +g ` R ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) ) |
| 44 |
43
|
eqeq1d |
|- ( ( ph /\ i = ( 0g ` R ) ) -> ( ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) <-> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 45 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 46 |
38 45 39
|
mndlid |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 47 |
37 41 46
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 48 |
41 44 47
|
rspcedvd |
|- ( ph -> E. i e. ( Base ` R ) ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 49 |
36 41 48
|
elrabd |
|- ( ph -> ( 0g ` R ) e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
| 50 |
6
|
a1i |
|- ( ph -> U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
| 51 |
50
|
eleq2d |
|- ( ph -> ( ( 0g ` R ) e. U <-> ( 0g ` R ) e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) ) |
| 52 |
49 51
|
mpbird |
|- ( ph -> ( 0g ` R ) e. U ) |
| 53 |
33 52 12
|
3jca |
|- ( ph -> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U /\ ( R |`s U ) e. Mnd ) ) |
| 54 |
|
eqid |
|- ( R |`s U ) = ( R |`s U ) |
| 55 |
38 39 54
|
issubm2 |
|- ( R e. Mnd -> ( U e. ( SubMnd ` R ) <-> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U /\ ( R |`s U ) e. Mnd ) ) ) |
| 56 |
37 55
|
syl |
|- ( ph -> ( U e. ( SubMnd ` R ) <-> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U /\ ( R |`s U ) e. Mnd ) ) ) |
| 57 |
53 56
|
mpbird |
|- ( ph -> U e. ( SubMnd ` R ) ) |
| 58 |
54 38
|
ressbas2 |
|- ( U C_ ( Base ` R ) -> U = ( Base ` ( R |`s U ) ) ) |
| 59 |
33 58
|
syl |
|- ( ph -> U = ( Base ` ( R |`s U ) ) ) |
| 60 |
59
|
eleq2d |
|- ( ph -> ( M e. U <-> M e. ( Base ` ( R |`s U ) ) ) ) |
| 61 |
21 60
|
mpbird |
|- ( ph -> M e. U ) |
| 62 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 63 |
62 54 8
|
submmulg |
|- ( ( U e. ( SubMnd ` R ) /\ E e. NN0 /\ M e. U ) -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
| 64 |
57 13 61 63
|
syl3anc |
|- ( ph -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
| 65 |
64
|
eleq1d |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) <-> ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) ) |
| 66 |
22 65
|
mpbird |
|- ( ph -> ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) ) |
| 67 |
64
|
oveq2d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
| 68 |
10
|
ablgrpd |
|- ( ph -> ( R |`s U ) e. Grp ) |
| 69 |
17
|
nn0zd |
|- ( ph -> K e. ZZ ) |
| 70 |
13
|
nn0zd |
|- ( ph -> E e. ZZ ) |
| 71 |
69 70 21
|
3jca |
|- ( ph -> ( K e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
| 72 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( K e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
| 73 |
68 71 72
|
syl2anc |
|- ( ph -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
| 74 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
| 75 |
3
|
nncnd |
|- ( ph -> E e. CC ) |
| 76 |
74 75
|
mulcomd |
|- ( ph -> ( K x. E ) = ( E x. K ) ) |
| 77 |
76
|
oveq1d |
|- ( ph -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) ) |
| 78 |
70 69 21
|
3jca |
|- ( ph -> ( E e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
| 79 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( E e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) = ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
| 80 |
68 78 79
|
syl2anc |
|- ( ph -> ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) = ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
| 81 |
20
|
simp2d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 82 |
81
|
oveq2d |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( E ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 83 |
|
eqid |
|- ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) |
| 84 |
7 8 83
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ E e. ZZ ) -> ( E ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 85 |
68 70 84
|
syl2anc |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 86 |
82 85
|
eqtrd |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 87 |
80 86
|
eqtrd |
|- ( ph -> ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 88 |
77 87
|
eqtrd |
|- ( ph -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 89 |
73 88
|
eqtr3d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 90 |
67 89
|
eqtrd |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 91 |
20
|
simp3d |
|- ( ph -> A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
| 92 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l e. NN0 ) |
| 93 |
92
|
nn0cnd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l e. CC ) |
| 94 |
93
|
mullidd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( 1 x. l ) = l ) |
| 95 |
94
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l = ( 1 x. l ) ) |
| 96 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
| 97 |
4
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( E gcd K ) = 1 ) |
| 98 |
96 97
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( E x. x ) + ( K x. y ) ) = 1 ) |
| 99 |
96 98
|
eqtr2d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> 1 = ( E gcd K ) ) |
| 100 |
99
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( 1 x. l ) = ( ( E gcd K ) x. l ) ) |
| 101 |
95 100
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l = ( ( E gcd K ) x. l ) ) |
| 102 |
101
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( l ( .g ` ( R |`s U ) ) M ) = ( ( ( E gcd K ) x. l ) ( .g ` ( R |`s U ) ) M ) ) |
| 103 |
96
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( E gcd K ) x. l ) = ( ( ( E x. x ) + ( K x. y ) ) x. l ) ) |
| 104 |
103
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( ( E gcd K ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) ) |
| 105 |
|
simp-4l |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ph /\ l e. NN0 ) ) |
| 106 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 107 |
|
simplr |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> x e. ZZ ) |
| 108 |
105 106 107
|
jca31 |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) ) |
| 109 |
|
simpr |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> y e. ZZ ) |
| 110 |
108 109
|
jca |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) ) |
| 111 |
75
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> E e. CC ) |
| 112 |
|
simplr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> x e. ZZ ) |
| 113 |
112
|
zcnd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> x e. CC ) |
| 114 |
111 113
|
mulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( E x. x ) e. CC ) |
| 115 |
74
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> K e. CC ) |
| 116 |
|
simpr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> y e. ZZ ) |
| 117 |
116
|
zcnd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> y e. CC ) |
| 118 |
115 117
|
mulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( K x. y ) e. CC ) |
| 119 |
|
simp-4r |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> l e. NN0 ) |
| 120 |
119
|
nn0cnd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> l e. CC ) |
| 121 |
114 118 120
|
adddird |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( E x. x ) + ( K x. y ) ) x. l ) = ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ) |
| 122 |
121
|
oveq1d |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) ) |
| 123 |
68
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( R |`s U ) e. Grp ) |
| 124 |
70
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> E e. ZZ ) |
| 125 |
124 112
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( E x. x ) e. ZZ ) |
| 126 |
119
|
nn0zd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> l e. ZZ ) |
| 127 |
125 126
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( E x. x ) x. l ) e. ZZ ) |
| 128 |
69
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> K e. ZZ ) |
| 129 |
128 116
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( K x. y ) e. ZZ ) |
| 130 |
129 126
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( K x. y ) x. l ) e. ZZ ) |
| 131 |
21
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
| 132 |
127 130 131
|
3jca |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( E x. x ) x. l ) e. ZZ /\ ( ( K x. y ) x. l ) e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
| 133 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
| 134 |
7 8 133
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( ( ( E x. x ) x. l ) e. ZZ /\ ( ( K x. y ) x. l ) e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) ) |
| 135 |
123 132 134
|
syl2anc |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) ) |
| 136 |
75
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> E e. CC ) |
| 137 |
|
simpr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> x e. ZZ ) |
| 138 |
137
|
zcnd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> x e. CC ) |
| 139 |
|
simpllr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> l e. NN0 ) |
| 140 |
139
|
nn0cnd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> l e. CC ) |
| 141 |
136 138 140
|
mulassd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( E x. x ) x. l ) = ( E x. ( x x. l ) ) ) |
| 142 |
138 140
|
mulcld |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x x. l ) e. CC ) |
| 143 |
136 142
|
mulcomd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E x. ( x x. l ) ) = ( ( x x. l ) x. E ) ) |
| 144 |
141 143
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( E x. x ) x. l ) = ( ( x x. l ) x. E ) ) |
| 145 |
144
|
oveq1d |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) ) |
| 146 |
68
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( R |`s U ) e. Grp ) |
| 147 |
139
|
nn0zd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> l e. ZZ ) |
| 148 |
137 147
|
zmulcld |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x x. l ) e. ZZ ) |
| 149 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> E e. ZZ ) |
| 150 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
| 151 |
148 149 150
|
3jca |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( x x. l ) e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
| 152 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( ( x x. l ) e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) = ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
| 153 |
146 151 152
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) = ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
| 154 |
22
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
| 155 |
137 147 154
|
3jca |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x e. ZZ /\ l e. ZZ /\ ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) ) |
| 156 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( x e. ZZ /\ l e. ZZ /\ ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) ) -> ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) ) |
| 157 |
146 155 156
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) ) |
| 158 |
57
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> U e. ( SubMnd ` R ) ) |
| 159 |
13
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> E e. NN0 ) |
| 160 |
61
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> M e. U ) |
| 161 |
158 159 160 63
|
syl3anc |
|- ( ( ph /\ l e. NN0 ) -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
| 162 |
161
|
ad2antrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
| 163 |
162
|
eqcomd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E ( .g ` ( R |`s U ) ) M ) = ( E ( .g ` R ) M ) ) |
| 164 |
163
|
oveq2d |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) ) |
| 165 |
|
simplr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 166 |
164 165
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 167 |
166
|
oveq2d |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) = ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 168 |
7 8 83
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 169 |
146 137 168
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 170 |
167 169
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 171 |
157 170
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 172 |
153 171
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 173 |
145 172
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 174 |
173
|
adantr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 175 |
|
simplll |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ph /\ l e. NN0 ) ) |
| 176 |
175 116
|
jca |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) ) |
| 177 |
74
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> K e. CC ) |
| 178 |
|
simpr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> y e. ZZ ) |
| 179 |
178
|
zcnd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> y e. CC ) |
| 180 |
|
simplr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> l e. NN0 ) |
| 181 |
180
|
nn0cnd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> l e. CC ) |
| 182 |
177 179 181
|
mulassd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( K x. y ) x. l ) = ( K x. ( y x. l ) ) ) |
| 183 |
179 181
|
mulcld |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( y x. l ) e. CC ) |
| 184 |
177 183
|
mulcomd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( K x. ( y x. l ) ) = ( ( y x. l ) x. K ) ) |
| 185 |
182 184
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( K x. y ) x. l ) = ( ( y x. l ) x. K ) ) |
| 186 |
185
|
oveq1d |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) ) |
| 187 |
68
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( R |`s U ) e. Grp ) |
| 188 |
180
|
nn0zd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> l e. ZZ ) |
| 189 |
178 188
|
zmulcld |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( y x. l ) e. ZZ ) |
| 190 |
69
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> K e. ZZ ) |
| 191 |
21
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
| 192 |
189 190 191
|
3jca |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
| 193 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( ( y x. l ) e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) = ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
| 194 |
187 192 193
|
syl2anc |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) = ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
| 195 |
81
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 196 |
195
|
oveq2d |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( ( y x. l ) ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 197 |
7 8 83
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ ( y x. l ) e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 198 |
187 189 197
|
syl2anc |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 199 |
196 198
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 200 |
194 199
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 201 |
186 200
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 202 |
176 201
|
syl |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 203 |
174 202
|
oveq12d |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) = ( ( 0g ` ( R |`s U ) ) ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 204 |
7 83
|
grpidcl |
|- ( ( R |`s U ) e. Grp -> ( 0g ` ( R |`s U ) ) e. ( Base ` ( R |`s U ) ) ) |
| 205 |
123 204
|
syl |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( 0g ` ( R |`s U ) ) e. ( Base ` ( R |`s U ) ) ) |
| 206 |
7 133 83 123 205
|
grpridd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( 0g ` ( R |`s U ) ) ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 207 |
203 206
|
eqtrd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
| 208 |
135 207
|
eqtrd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 209 |
122 208
|
eqtrd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 210 |
110 209
|
syl |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 211 |
210
|
adantr |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 212 |
104 211
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( ( E gcd K ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 213 |
102 212
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 214 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
| 215 |
213 214
|
mpd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> K || l ) |
| 216 |
|
bezout |
|- ( ( E e. ZZ /\ K e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
| 217 |
70 69 216
|
syl2anc |
|- ( ph -> E. x e. ZZ E. y e. ZZ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
| 218 |
217
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) -> E. x e. ZZ E. y e. ZZ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
| 219 |
215 218
|
r19.29vva |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) -> K || l ) |
| 220 |
219
|
ex |
|- ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) -> ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
| 221 |
220
|
ex |
|- ( ( ph /\ l e. NN0 ) -> ( ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) -> ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 222 |
221
|
ralimdva |
|- ( ph -> ( A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) -> A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 223 |
91 222
|
mpd |
|- ( ph -> A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
| 224 |
66 90 223
|
3jca |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 225 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
| 226 |
2 225
|
syl |
|- ( ph -> K e. NN0 ) |
| 227 |
11 226 8
|
isprimroot |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( ( R |`s U ) PrimRoots K ) <-> ( ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 228 |
224 227
|
mpbird |
|- ( ph -> ( E ( .g ` R ) M ) e. ( ( R |`s U ) PrimRoots K ) ) |
| 229 |
14
|
eleq2d |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( R PrimRoots K ) <-> ( E ( .g ` R ) M ) e. ( ( R |`s U ) PrimRoots K ) ) ) |
| 230 |
228 229
|
mpbird |
|- ( ph -> ( E ( .g ` R ) M ) e. ( R PrimRoots K ) ) |