Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprmpow.1 |
|- ( ph -> R e. CMnd ) |
2 |
|
primrootscoprmpow.2 |
|- ( ph -> K e. NN ) |
3 |
|
primrootscoprmpow.3 |
|- ( ph -> E e. NN ) |
4 |
|
primrootscoprmpow.4 |
|- ( ph -> ( E gcd K ) = 1 ) |
5 |
|
primrootscoprmpow.5 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
6 |
|
primrootscoprmpow.6 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
7 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
8 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
9 |
1 2 6
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
10 |
9
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
11 |
10
|
ablcmnd |
|- ( ph -> ( R |`s U ) e. CMnd ) |
12 |
11
|
cmnmndd |
|- ( ph -> ( R |`s U ) e. Mnd ) |
13 |
3
|
nnnn0d |
|- ( ph -> E e. NN0 ) |
14 |
9
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
15 |
14
|
eleq2d |
|- ( ph -> ( M e. ( R PrimRoots K ) <-> M e. ( ( R |`s U ) PrimRoots K ) ) ) |
16 |
5 15
|
mpbid |
|- ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) |
17 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
18 |
11 17 8
|
isprimroot |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
19 |
18
|
biimpd |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
20 |
16 19
|
mpd |
|- ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
21 |
20
|
simp1d |
|- ( ph -> M e. ( Base ` ( R |`s U ) ) ) |
22 |
7 8 12 13 21
|
mulgnn0cld |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
23 |
6
|
eleq2i |
|- ( c e. U <-> c e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
24 |
|
oveq2 |
|- ( a = c -> ( i ( +g ` R ) a ) = ( i ( +g ` R ) c ) ) |
25 |
24
|
eqeq1d |
|- ( a = c -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
26 |
25
|
rexbidv |
|- ( a = c -> ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
27 |
26
|
elrab |
|- ( c e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } <-> ( c e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
28 |
23 27
|
bitri |
|- ( c e. U <-> ( c e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
29 |
28
|
biimpi |
|- ( c e. U -> ( c e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) c ) = ( 0g ` R ) ) ) |
30 |
29
|
simpld |
|- ( c e. U -> c e. ( Base ` R ) ) |
31 |
30
|
adantl |
|- ( ( ph /\ c e. U ) -> c e. ( Base ` R ) ) |
32 |
31
|
ex |
|- ( ph -> ( c e. U -> c e. ( Base ` R ) ) ) |
33 |
32
|
ssrdv |
|- ( ph -> U C_ ( Base ` R ) ) |
34 |
|
oveq2 |
|- ( a = ( 0g ` R ) -> ( i ( +g ` R ) a ) = ( i ( +g ` R ) ( 0g ` R ) ) ) |
35 |
34
|
eqeq1d |
|- ( a = ( 0g ` R ) -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
36 |
35
|
rexbidv |
|- ( a = ( 0g ` R ) -> ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. i e. ( Base ` R ) ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
37 |
1
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
39 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
40 |
38 39
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
41 |
37 40
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
42 |
|
simpr |
|- ( ( ph /\ i = ( 0g ` R ) ) -> i = ( 0g ` R ) ) |
43 |
42
|
oveq1d |
|- ( ( ph /\ i = ( 0g ` R ) ) -> ( i ( +g ` R ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) ) |
44 |
43
|
eqeq1d |
|- ( ( ph /\ i = ( 0g ` R ) ) -> ( ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) <-> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
45 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
46 |
38 45 39
|
mndlid |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
47 |
37 41 46
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
48 |
41 44 47
|
rspcedvd |
|- ( ph -> E. i e. ( Base ` R ) ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
49 |
36 41 48
|
elrabd |
|- ( ph -> ( 0g ` R ) e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
50 |
6
|
a1i |
|- ( ph -> U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
51 |
50
|
eleq2d |
|- ( ph -> ( ( 0g ` R ) e. U <-> ( 0g ` R ) e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) ) |
52 |
49 51
|
mpbird |
|- ( ph -> ( 0g ` R ) e. U ) |
53 |
33 52 12
|
3jca |
|- ( ph -> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U /\ ( R |`s U ) e. Mnd ) ) |
54 |
|
eqid |
|- ( R |`s U ) = ( R |`s U ) |
55 |
38 39 54
|
issubm2 |
|- ( R e. Mnd -> ( U e. ( SubMnd ` R ) <-> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U /\ ( R |`s U ) e. Mnd ) ) ) |
56 |
37 55
|
syl |
|- ( ph -> ( U e. ( SubMnd ` R ) <-> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U /\ ( R |`s U ) e. Mnd ) ) ) |
57 |
53 56
|
mpbird |
|- ( ph -> U e. ( SubMnd ` R ) ) |
58 |
54 38
|
ressbas2 |
|- ( U C_ ( Base ` R ) -> U = ( Base ` ( R |`s U ) ) ) |
59 |
33 58
|
syl |
|- ( ph -> U = ( Base ` ( R |`s U ) ) ) |
60 |
59
|
eleq2d |
|- ( ph -> ( M e. U <-> M e. ( Base ` ( R |`s U ) ) ) ) |
61 |
21 60
|
mpbird |
|- ( ph -> M e. U ) |
62 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
63 |
62 54 8
|
submmulg |
|- ( ( U e. ( SubMnd ` R ) /\ E e. NN0 /\ M e. U ) -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
64 |
57 13 61 63
|
syl3anc |
|- ( ph -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
65 |
64
|
eleq1d |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) <-> ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) ) |
66 |
22 65
|
mpbird |
|- ( ph -> ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) ) |
67 |
64
|
oveq2d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
68 |
10
|
ablgrpd |
|- ( ph -> ( R |`s U ) e. Grp ) |
69 |
17
|
nn0zd |
|- ( ph -> K e. ZZ ) |
70 |
13
|
nn0zd |
|- ( ph -> E e. ZZ ) |
71 |
69 70 21
|
3jca |
|- ( ph -> ( K e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
72 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( K e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
73 |
68 71 72
|
syl2anc |
|- ( ph -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
74 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
75 |
3
|
nncnd |
|- ( ph -> E e. CC ) |
76 |
74 75
|
mulcomd |
|- ( ph -> ( K x. E ) = ( E x. K ) ) |
77 |
76
|
oveq1d |
|- ( ph -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) ) |
78 |
70 69 21
|
3jca |
|- ( ph -> ( E e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
79 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( E e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) = ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
80 |
68 78 79
|
syl2anc |
|- ( ph -> ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) = ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
81 |
20
|
simp2d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
82 |
81
|
oveq2d |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( E ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
83 |
|
eqid |
|- ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) |
84 |
7 8 83
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ E e. ZZ ) -> ( E ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
85 |
68 70 84
|
syl2anc |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
86 |
82 85
|
eqtrd |
|- ( ph -> ( E ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
87 |
80 86
|
eqtrd |
|- ( ph -> ( ( E x. K ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
88 |
77 87
|
eqtrd |
|- ( ph -> ( ( K x. E ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
89 |
73 88
|
eqtr3d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
90 |
67 89
|
eqtrd |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
91 |
20
|
simp3d |
|- ( ph -> A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
92 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l e. NN0 ) |
93 |
92
|
nn0cnd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l e. CC ) |
94 |
93
|
mullidd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( 1 x. l ) = l ) |
95 |
94
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l = ( 1 x. l ) ) |
96 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
97 |
4
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( E gcd K ) = 1 ) |
98 |
96 97
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( E x. x ) + ( K x. y ) ) = 1 ) |
99 |
96 98
|
eqtr2d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> 1 = ( E gcd K ) ) |
100 |
99
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( 1 x. l ) = ( ( E gcd K ) x. l ) ) |
101 |
95 100
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> l = ( ( E gcd K ) x. l ) ) |
102 |
101
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( l ( .g ` ( R |`s U ) ) M ) = ( ( ( E gcd K ) x. l ) ( .g ` ( R |`s U ) ) M ) ) |
103 |
96
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( E gcd K ) x. l ) = ( ( ( E x. x ) + ( K x. y ) ) x. l ) ) |
104 |
103
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( ( E gcd K ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) ) |
105 |
|
simp-4l |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ph /\ l e. NN0 ) ) |
106 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
107 |
|
simplr |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> x e. ZZ ) |
108 |
105 106 107
|
jca31 |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) ) |
109 |
|
simpr |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> y e. ZZ ) |
110 |
108 109
|
jca |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) ) |
111 |
75
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> E e. CC ) |
112 |
|
simplr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> x e. ZZ ) |
113 |
112
|
zcnd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> x e. CC ) |
114 |
111 113
|
mulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( E x. x ) e. CC ) |
115 |
74
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> K e. CC ) |
116 |
|
simpr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> y e. ZZ ) |
117 |
116
|
zcnd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> y e. CC ) |
118 |
115 117
|
mulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( K x. y ) e. CC ) |
119 |
|
simp-4r |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> l e. NN0 ) |
120 |
119
|
nn0cnd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> l e. CC ) |
121 |
114 118 120
|
adddird |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( E x. x ) + ( K x. y ) ) x. l ) = ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ) |
122 |
121
|
oveq1d |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) ) |
123 |
68
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( R |`s U ) e. Grp ) |
124 |
70
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> E e. ZZ ) |
125 |
124 112
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( E x. x ) e. ZZ ) |
126 |
119
|
nn0zd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> l e. ZZ ) |
127 |
125 126
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( E x. x ) x. l ) e. ZZ ) |
128 |
69
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> K e. ZZ ) |
129 |
128 116
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( K x. y ) e. ZZ ) |
130 |
129 126
|
zmulcld |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( K x. y ) x. l ) e. ZZ ) |
131 |
21
|
ad4antr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
132 |
127 130 131
|
3jca |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( E x. x ) x. l ) e. ZZ /\ ( ( K x. y ) x. l ) e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
133 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
134 |
7 8 133
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( ( ( E x. x ) x. l ) e. ZZ /\ ( ( K x. y ) x. l ) e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) ) |
135 |
123 132 134
|
syl2anc |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) = ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) ) |
136 |
75
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> E e. CC ) |
137 |
|
simpr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> x e. ZZ ) |
138 |
137
|
zcnd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> x e. CC ) |
139 |
|
simpllr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> l e. NN0 ) |
140 |
139
|
nn0cnd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> l e. CC ) |
141 |
136 138 140
|
mulassd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( E x. x ) x. l ) = ( E x. ( x x. l ) ) ) |
142 |
138 140
|
mulcld |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x x. l ) e. CC ) |
143 |
136 142
|
mulcomd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E x. ( x x. l ) ) = ( ( x x. l ) x. E ) ) |
144 |
141 143
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( E x. x ) x. l ) = ( ( x x. l ) x. E ) ) |
145 |
144
|
oveq1d |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) ) |
146 |
68
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( R |`s U ) e. Grp ) |
147 |
139
|
nn0zd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> l e. ZZ ) |
148 |
137 147
|
zmulcld |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x x. l ) e. ZZ ) |
149 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> E e. ZZ ) |
150 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
151 |
148 149 150
|
3jca |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( x x. l ) e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
152 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( ( x x. l ) e. ZZ /\ E e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) = ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
153 |
146 151 152
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) = ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) |
154 |
22
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
155 |
137 147 154
|
3jca |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x e. ZZ /\ l e. ZZ /\ ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) ) |
156 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( x e. ZZ /\ l e. ZZ /\ ( E ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) ) -> ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) ) |
157 |
146 155 156
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) ) |
158 |
57
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> U e. ( SubMnd ` R ) ) |
159 |
13
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> E e. NN0 ) |
160 |
61
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> M e. U ) |
161 |
158 159 160 63
|
syl3anc |
|- ( ( ph /\ l e. NN0 ) -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
162 |
161
|
ad2antrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E ( .g ` R ) M ) = ( E ( .g ` ( R |`s U ) ) M ) ) |
163 |
162
|
eqcomd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( E ( .g ` ( R |`s U ) ) M ) = ( E ( .g ` R ) M ) ) |
164 |
163
|
oveq2d |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) ) |
165 |
|
simplr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
166 |
164 165
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
167 |
166
|
oveq2d |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) = ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
168 |
7 8 83
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
169 |
146 137 168
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
170 |
167 169
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( l ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) ) = ( 0g ` ( R |`s U ) ) ) |
171 |
157 170
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( x x. l ) ( .g ` ( R |`s U ) ) ( E ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
172 |
153 171
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( x x. l ) x. E ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
173 |
145 172
|
eqtrd |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) -> ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
174 |
173
|
adantr |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
175 |
|
simplll |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ph /\ l e. NN0 ) ) |
176 |
175 116
|
jca |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) ) |
177 |
74
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> K e. CC ) |
178 |
|
simpr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> y e. ZZ ) |
179 |
178
|
zcnd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> y e. CC ) |
180 |
|
simplr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> l e. NN0 ) |
181 |
180
|
nn0cnd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> l e. CC ) |
182 |
177 179 181
|
mulassd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( K x. y ) x. l ) = ( K x. ( y x. l ) ) ) |
183 |
179 181
|
mulcld |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( y x. l ) e. CC ) |
184 |
177 183
|
mulcomd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( K x. ( y x. l ) ) = ( ( y x. l ) x. K ) ) |
185 |
182 184
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( K x. y ) x. l ) = ( ( y x. l ) x. K ) ) |
186 |
185
|
oveq1d |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) ) |
187 |
68
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( R |`s U ) e. Grp ) |
188 |
180
|
nn0zd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> l e. ZZ ) |
189 |
178 188
|
zmulcld |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( y x. l ) e. ZZ ) |
190 |
69
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> K e. ZZ ) |
191 |
21
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
192 |
189 190 191
|
3jca |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
193 |
7 8
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( ( y x. l ) e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) = ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
194 |
187 192 193
|
syl2anc |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) = ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
195 |
81
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
196 |
195
|
oveq2d |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( ( y x. l ) ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
197 |
7 8 83
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ ( y x. l ) e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
198 |
187 189 197
|
syl2anc |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
199 |
196 198
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( y x. l ) ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
200 |
194 199
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( y x. l ) x. K ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
201 |
186 200
|
eqtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ y e. ZZ ) -> ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
202 |
176 201
|
syl |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
203 |
174 202
|
oveq12d |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) = ( ( 0g ` ( R |`s U ) ) ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
204 |
7 83
|
grpidcl |
|- ( ( R |`s U ) e. Grp -> ( 0g ` ( R |`s U ) ) e. ( Base ` ( R |`s U ) ) ) |
205 |
123 204
|
syl |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( 0g ` ( R |`s U ) ) e. ( Base ` ( R |`s U ) ) ) |
206 |
7 133 83 123 205
|
grpridd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( 0g ` ( R |`s U ) ) ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
207 |
203 206
|
eqtrd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( ( ( K x. y ) x. l ) ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
208 |
135 207
|
eqtrd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) x. l ) + ( ( K x. y ) x. l ) ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
209 |
122 208
|
eqtrd |
|- ( ( ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
210 |
110 209
|
syl |
|- ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
211 |
210
|
adantr |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( ( ( E x. x ) + ( K x. y ) ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
212 |
104 211
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( ( E gcd K ) x. l ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
213 |
102 212
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
214 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
215 |
213 214
|
mpd |
|- ( ( ( ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) /\ x e. ZZ ) /\ y e. ZZ ) /\ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) -> K || l ) |
216 |
|
bezout |
|- ( ( E e. ZZ /\ K e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
217 |
70 69 216
|
syl2anc |
|- ( ph -> E. x e. ZZ E. y e. ZZ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
218 |
217
|
ad3antrrr |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) -> E. x e. ZZ E. y e. ZZ ( E gcd K ) = ( ( E x. x ) + ( K x. y ) ) ) |
219 |
215 218
|
r19.29vva |
|- ( ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) /\ ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) ) -> K || l ) |
220 |
219
|
ex |
|- ( ( ( ph /\ l e. NN0 ) /\ ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) -> ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
221 |
220
|
ex |
|- ( ( ph /\ l e. NN0 ) -> ( ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) -> ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
222 |
221
|
ralimdva |
|- ( ph -> ( A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) -> A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
223 |
91 222
|
mpd |
|- ( ph -> A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) |
224 |
66 90 223
|
3jca |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
225 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
226 |
2 225
|
syl |
|- ( ph -> K e. NN0 ) |
227 |
11 226 8
|
isprimroot |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( ( R |`s U ) PrimRoots K ) <-> ( ( E ( .g ` R ) M ) e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) ( E ( .g ` R ) M ) ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
228 |
224 227
|
mpbird |
|- ( ph -> ( E ( .g ` R ) M ) e. ( ( R |`s U ) PrimRoots K ) ) |
229 |
14
|
eleq2d |
|- ( ph -> ( ( E ( .g ` R ) M ) e. ( R PrimRoots K ) <-> ( E ( .g ` R ) M ) e. ( ( R |`s U ) PrimRoots K ) ) ) |
230 |
228 229
|
mpbird |
|- ( ph -> ( E ( .g ` R ) M ) e. ( R PrimRoots K ) ) |