Metamath Proof Explorer


Theorem primrootscoprmpow

Description: Coprime powers of primitive roots are primitive roots. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses primrootscoprmpow.1 φ R CMnd
primrootscoprmpow.2 φ K
primrootscoprmpow.3 φ E
primrootscoprmpow.4 φ E gcd K = 1
primrootscoprmpow.5 φ M R PrimRoots K
primrootscoprmpow.6 U = a Base R | i Base R i + R a = 0 R
Assertion primrootscoprmpow φ E R M R PrimRoots K

Proof

Step Hyp Ref Expression
1 primrootscoprmpow.1 φ R CMnd
2 primrootscoprmpow.2 φ K
3 primrootscoprmpow.3 φ E
4 primrootscoprmpow.4 φ E gcd K = 1
5 primrootscoprmpow.5 φ M R PrimRoots K
6 primrootscoprmpow.6 U = a Base R | i Base R i + R a = 0 R
7 eqid Base R 𝑠 U = Base R 𝑠 U
8 eqid R 𝑠 U = R 𝑠 U
9 1 2 6 primrootsunit φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel
10 9 simprd φ R 𝑠 U Abel
11 10 ablcmnd φ R 𝑠 U CMnd
12 11 cmnmndd φ R 𝑠 U Mnd
13 3 nnnn0d φ E 0
14 9 simpld φ R PrimRoots K = R 𝑠 U PrimRoots K
15 14 eleq2d φ M R PrimRoots K M R 𝑠 U PrimRoots K
16 5 15 mpbid φ M R 𝑠 U PrimRoots K
17 2 nnnn0d φ K 0
18 11 17 8 isprimroot φ M R 𝑠 U PrimRoots K M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
19 18 biimpd φ M R 𝑠 U PrimRoots K M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
20 16 19 mpd φ M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
21 20 simp1d φ M Base R 𝑠 U
22 7 8 12 13 21 mulgnn0cld φ E R 𝑠 U M Base R 𝑠 U
23 6 eleq2i c U c a Base R | i Base R i + R a = 0 R
24 oveq2 a = c i + R a = i + R c
25 24 eqeq1d a = c i + R a = 0 R i + R c = 0 R
26 25 rexbidv a = c i Base R i + R a = 0 R i Base R i + R c = 0 R
27 26 elrab c a Base R | i Base R i + R a = 0 R c Base R i Base R i + R c = 0 R
28 23 27 bitri c U c Base R i Base R i + R c = 0 R
29 28 biimpi c U c Base R i Base R i + R c = 0 R
30 29 simpld c U c Base R
31 30 adantl φ c U c Base R
32 31 ex φ c U c Base R
33 32 ssrdv φ U Base R
34 oveq2 a = 0 R i + R a = i + R 0 R
35 34 eqeq1d a = 0 R i + R a = 0 R i + R 0 R = 0 R
36 35 rexbidv a = 0 R i Base R i + R a = 0 R i Base R i + R 0 R = 0 R
37 1 cmnmndd φ R Mnd
38 eqid Base R = Base R
39 eqid 0 R = 0 R
40 38 39 mndidcl R Mnd 0 R Base R
41 37 40 syl φ 0 R Base R
42 simpr φ i = 0 R i = 0 R
43 42 oveq1d φ i = 0 R i + R 0 R = 0 R + R 0 R
44 43 eqeq1d φ i = 0 R i + R 0 R = 0 R 0 R + R 0 R = 0 R
45 eqid + R = + R
46 38 45 39 mndlid R Mnd 0 R Base R 0 R + R 0 R = 0 R
47 37 41 46 syl2anc φ 0 R + R 0 R = 0 R
48 41 44 47 rspcedvd φ i Base R i + R 0 R = 0 R
49 36 41 48 elrabd φ 0 R a Base R | i Base R i + R a = 0 R
50 6 a1i φ U = a Base R | i Base R i + R a = 0 R
51 50 eleq2d φ 0 R U 0 R a Base R | i Base R i + R a = 0 R
52 49 51 mpbird φ 0 R U
53 33 52 12 3jca φ U Base R 0 R U R 𝑠 U Mnd
54 eqid R 𝑠 U = R 𝑠 U
55 38 39 54 issubm2 R Mnd U SubMnd R U Base R 0 R U R 𝑠 U Mnd
56 37 55 syl φ U SubMnd R U Base R 0 R U R 𝑠 U Mnd
57 53 56 mpbird φ U SubMnd R
58 54 38 ressbas2 U Base R U = Base R 𝑠 U
59 33 58 syl φ U = Base R 𝑠 U
60 59 eleq2d φ M U M Base R 𝑠 U
61 21 60 mpbird φ M U
62 eqid R = R
63 62 54 8 submmulg U SubMnd R E 0 M U E R M = E R 𝑠 U M
64 57 13 61 63 syl3anc φ E R M = E R 𝑠 U M
65 64 eleq1d φ E R M Base R 𝑠 U E R 𝑠 U M Base R 𝑠 U
66 22 65 mpbird φ E R M Base R 𝑠 U
67 64 oveq2d φ K R 𝑠 U E R M = K R 𝑠 U E R 𝑠 U M
68 10 ablgrpd φ R 𝑠 U Grp
69 17 nn0zd φ K
70 13 nn0zd φ E
71 69 70 21 3jca φ K E M Base R 𝑠 U
72 7 8 mulgass R 𝑠 U Grp K E M Base R 𝑠 U K E R 𝑠 U M = K R 𝑠 U E R 𝑠 U M
73 68 71 72 syl2anc φ K E R 𝑠 U M = K R 𝑠 U E R 𝑠 U M
74 2 nncnd φ K
75 3 nncnd φ E
76 74 75 mulcomd φ K E = E K
77 76 oveq1d φ K E R 𝑠 U M = E K R 𝑠 U M
78 70 69 21 3jca φ E K M Base R 𝑠 U
79 7 8 mulgass R 𝑠 U Grp E K M Base R 𝑠 U E K R 𝑠 U M = E R 𝑠 U K R 𝑠 U M
80 68 78 79 syl2anc φ E K R 𝑠 U M = E R 𝑠 U K R 𝑠 U M
81 20 simp2d φ K R 𝑠 U M = 0 R 𝑠 U
82 81 oveq2d φ E R 𝑠 U K R 𝑠 U M = E R 𝑠 U 0 R 𝑠 U
83 eqid 0 R 𝑠 U = 0 R 𝑠 U
84 7 8 83 mulgz R 𝑠 U Grp E E R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
85 68 70 84 syl2anc φ E R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
86 82 85 eqtrd φ E R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U
87 80 86 eqtrd φ E K R 𝑠 U M = 0 R 𝑠 U
88 77 87 eqtrd φ K E R 𝑠 U M = 0 R 𝑠 U
89 73 88 eqtr3d φ K R 𝑠 U E R 𝑠 U M = 0 R 𝑠 U
90 67 89 eqtrd φ K R 𝑠 U E R M = 0 R 𝑠 U
91 20 simp3d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l
92 simp-6r φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l 0
93 92 nn0cnd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l
94 93 mullidd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y 1 l = l
95 94 eqcomd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l = 1 l
96 simpr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E gcd K = E x + K y
97 4 ad6antr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E gcd K = 1
98 96 97 eqtr3d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E x + K y = 1
99 96 98 eqtr2d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y 1 = E gcd K
100 99 oveq1d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y 1 l = E gcd K l
101 95 100 eqtrd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l = E gcd K l
102 101 oveq1d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l R 𝑠 U M = E gcd K l R 𝑠 U M
103 96 oveq1d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E gcd K l = E x + K y l
104 103 oveq1d φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E gcd K l R 𝑠 U M = E x + K y l R 𝑠 U M
105 simp-4l φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y φ l 0
106 simpllr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y l R 𝑠 U E R M = 0 R 𝑠 U
107 simplr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y x
108 105 106 107 jca31 φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x
109 simpr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y y
110 108 109 jca φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y
111 75 ad4antr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E
112 simplr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y x
113 112 zcnd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y x
114 111 113 mulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x
115 74 ad4antr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y K
116 simpr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y y
117 116 zcnd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y y
118 115 117 mulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y K y
119 simp-4r φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y l 0
120 119 nn0cnd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y l
121 114 118 120 adddird φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x + K y l = E x l + K y l
122 121 oveq1d φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x + K y l R 𝑠 U M = E x l + K y l R 𝑠 U M
123 68 ad4antr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y R 𝑠 U Grp
124 70 ad4antr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E
125 124 112 zmulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x
126 119 nn0zd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y l
127 125 126 zmulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l
128 69 ad4antr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y K
129 128 116 zmulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y K y
130 129 126 zmulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y K y l
131 21 ad4antr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y M Base R 𝑠 U
132 127 130 131 3jca φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l K y l M Base R 𝑠 U
133 eqid + R 𝑠 U = + R 𝑠 U
134 7 8 133 mulgdir R 𝑠 U Grp E x l K y l M Base R 𝑠 U E x l + K y l R 𝑠 U M = E x l R 𝑠 U M + R 𝑠 U K y l R 𝑠 U M
135 123 132 134 syl2anc φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l + K y l R 𝑠 U M = E x l R 𝑠 U M + R 𝑠 U K y l R 𝑠 U M
136 75 ad3antrrr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E
137 simpr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x
138 137 zcnd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x
139 simpllr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x l 0
140 139 nn0cnd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x l
141 136 138 140 mulassd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E x l = E x l
142 138 140 mulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l
143 136 142 mulcomd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E x l = x l E
144 141 143 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E x l = x l E
145 144 oveq1d φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E x l R 𝑠 U M = x l E R 𝑠 U M
146 68 ad3antrrr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x R 𝑠 U Grp
147 139 nn0zd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x l
148 137 147 zmulcld φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l
149 70 ad3antrrr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E
150 21 ad3antrrr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x M Base R 𝑠 U
151 148 149 150 3jca φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l E M Base R 𝑠 U
152 7 8 mulgass R 𝑠 U Grp x l E M Base R 𝑠 U x l E R 𝑠 U M = x l R 𝑠 U E R 𝑠 U M
153 146 151 152 syl2anc φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l E R 𝑠 U M = x l R 𝑠 U E R 𝑠 U M
154 22 ad3antrrr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E R 𝑠 U M Base R 𝑠 U
155 137 147 154 3jca φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l E R 𝑠 U M Base R 𝑠 U
156 7 8 mulgass R 𝑠 U Grp x l E R 𝑠 U M Base R 𝑠 U x l R 𝑠 U E R 𝑠 U M = x R 𝑠 U l R 𝑠 U E R 𝑠 U M
157 146 155 156 syl2anc φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l R 𝑠 U E R 𝑠 U M = x R 𝑠 U l R 𝑠 U E R 𝑠 U M
158 57 adantr φ l 0 U SubMnd R
159 13 adantr φ l 0 E 0
160 61 adantr φ l 0 M U
161 158 159 160 63 syl3anc φ l 0 E R M = E R 𝑠 U M
162 161 ad2antrr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E R M = E R 𝑠 U M
163 162 eqcomd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E R 𝑠 U M = E R M
164 163 oveq2d φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x l R 𝑠 U E R 𝑠 U M = l R 𝑠 U E R M
165 simplr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x l R 𝑠 U E R M = 0 R 𝑠 U
166 164 165 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x l R 𝑠 U E R 𝑠 U M = 0 R 𝑠 U
167 166 oveq2d φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x R 𝑠 U l R 𝑠 U E R 𝑠 U M = x R 𝑠 U 0 R 𝑠 U
168 7 8 83 mulgz R 𝑠 U Grp x x R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
169 146 137 168 syl2anc φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
170 167 169 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x R 𝑠 U l R 𝑠 U E R 𝑠 U M = 0 R 𝑠 U
171 157 170 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l R 𝑠 U E R 𝑠 U M = 0 R 𝑠 U
172 153 171 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x x l E R 𝑠 U M = 0 R 𝑠 U
173 145 172 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x E x l R 𝑠 U M = 0 R 𝑠 U
174 173 adantr φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l R 𝑠 U M = 0 R 𝑠 U
175 simplll φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y φ l 0
176 175 116 jca φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y φ l 0 y
177 74 ad2antrr φ l 0 y K
178 simpr φ l 0 y y
179 178 zcnd φ l 0 y y
180 simplr φ l 0 y l 0
181 180 nn0cnd φ l 0 y l
182 177 179 181 mulassd φ l 0 y K y l = K y l
183 179 181 mulcld φ l 0 y y l
184 177 183 mulcomd φ l 0 y K y l = y l K
185 182 184 eqtrd φ l 0 y K y l = y l K
186 185 oveq1d φ l 0 y K y l R 𝑠 U M = y l K R 𝑠 U M
187 68 ad2antrr φ l 0 y R 𝑠 U Grp
188 180 nn0zd φ l 0 y l
189 178 188 zmulcld φ l 0 y y l
190 69 ad2antrr φ l 0 y K
191 21 ad2antrr φ l 0 y M Base R 𝑠 U
192 189 190 191 3jca φ l 0 y y l K M Base R 𝑠 U
193 7 8 mulgass R 𝑠 U Grp y l K M Base R 𝑠 U y l K R 𝑠 U M = y l R 𝑠 U K R 𝑠 U M
194 187 192 193 syl2anc φ l 0 y y l K R 𝑠 U M = y l R 𝑠 U K R 𝑠 U M
195 81 ad2antrr φ l 0 y K R 𝑠 U M = 0 R 𝑠 U
196 195 oveq2d φ l 0 y y l R 𝑠 U K R 𝑠 U M = y l R 𝑠 U 0 R 𝑠 U
197 7 8 83 mulgz R 𝑠 U Grp y l y l R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
198 187 189 197 syl2anc φ l 0 y y l R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
199 196 198 eqtrd φ l 0 y y l R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U
200 194 199 eqtrd φ l 0 y y l K R 𝑠 U M = 0 R 𝑠 U
201 186 200 eqtrd φ l 0 y K y l R 𝑠 U M = 0 R 𝑠 U
202 176 201 syl φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y K y l R 𝑠 U M = 0 R 𝑠 U
203 174 202 oveq12d φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l R 𝑠 U M + R 𝑠 U K y l R 𝑠 U M = 0 R 𝑠 U + R 𝑠 U 0 R 𝑠 U
204 7 83 grpidcl R 𝑠 U Grp 0 R 𝑠 U Base R 𝑠 U
205 123 204 syl φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y 0 R 𝑠 U Base R 𝑠 U
206 7 133 83 123 205 grpridd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y 0 R 𝑠 U + R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
207 203 206 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l R 𝑠 U M + R 𝑠 U K y l R 𝑠 U M = 0 R 𝑠 U
208 135 207 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x l + K y l R 𝑠 U M = 0 R 𝑠 U
209 122 208 eqtrd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U x y E x + K y l R 𝑠 U M = 0 R 𝑠 U
210 110 209 syl φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E x + K y l R 𝑠 U M = 0 R 𝑠 U
211 210 adantr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E x + K y l R 𝑠 U M = 0 R 𝑠 U
212 104 211 eqtrd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y E gcd K l R 𝑠 U M = 0 R 𝑠 U
213 102 212 eqtrd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l R 𝑠 U M = 0 R 𝑠 U
214 simp-5r φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y l R 𝑠 U M = 0 R 𝑠 U K l
215 213 214 mpd φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y K l
216 bezout E K x y E gcd K = E x + K y
217 70 69 216 syl2anc φ x y E gcd K = E x + K y
218 217 ad3antrrr φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U x y E gcd K = E x + K y
219 215 218 r19.29vva φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U K l
220 219 ex φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U K l
221 220 ex φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l R 𝑠 U E R M = 0 R 𝑠 U K l
222 221 ralimdva φ l 0 l R 𝑠 U M = 0 R 𝑠 U K l l 0 l R 𝑠 U E R M = 0 R 𝑠 U K l
223 91 222 mpd φ l 0 l R 𝑠 U E R M = 0 R 𝑠 U K l
224 66 90 223 3jca φ E R M Base R 𝑠 U K R 𝑠 U E R M = 0 R 𝑠 U l 0 l R 𝑠 U E R M = 0 R 𝑠 U K l
225 nnnn0 K K 0
226 2 225 syl φ K 0
227 11 226 8 isprimroot φ E R M R 𝑠 U PrimRoots K E R M Base R 𝑠 U K R 𝑠 U E R M = 0 R 𝑠 U l 0 l R 𝑠 U E R M = 0 R 𝑠 U K l
228 224 227 mpbird φ E R M R 𝑠 U PrimRoots K
229 14 eleq2d φ E R M R PrimRoots K E R M R 𝑠 U PrimRoots K
230 228 229 mpbird φ E R M R PrimRoots K