Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprmpow.1 |
|
2 |
|
primrootscoprmpow.2 |
|
3 |
|
primrootscoprmpow.3 |
|
4 |
|
primrootscoprmpow.4 |
|
5 |
|
primrootscoprmpow.5 |
|
6 |
|
primrootscoprmpow.6 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 2 6
|
primrootsunit |
|
10 |
9
|
simprd |
|
11 |
10
|
ablcmnd |
|
12 |
11
|
cmnmndd |
|
13 |
3
|
nnnn0d |
|
14 |
9
|
simpld |
|
15 |
14
|
eleq2d |
|
16 |
5 15
|
mpbid |
|
17 |
2
|
nnnn0d |
|
18 |
11 17 8
|
isprimroot |
|
19 |
18
|
biimpd |
|
20 |
16 19
|
mpd |
|
21 |
20
|
simp1d |
|
22 |
7 8 12 13 21
|
mulgnn0cld |
|
23 |
6
|
eleq2i |
|
24 |
|
oveq2 |
|
25 |
24
|
eqeq1d |
|
26 |
25
|
rexbidv |
|
27 |
26
|
elrab |
|
28 |
23 27
|
bitri |
|
29 |
28
|
biimpi |
|
30 |
29
|
simpld |
|
31 |
30
|
adantl |
|
32 |
31
|
ex |
|
33 |
32
|
ssrdv |
|
34 |
|
oveq2 |
|
35 |
34
|
eqeq1d |
|
36 |
35
|
rexbidv |
|
37 |
1
|
cmnmndd |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
38 39
|
mndidcl |
|
41 |
37 40
|
syl |
|
42 |
|
simpr |
|
43 |
42
|
oveq1d |
|
44 |
43
|
eqeq1d |
|
45 |
|
eqid |
|
46 |
38 45 39
|
mndlid |
|
47 |
37 41 46
|
syl2anc |
|
48 |
41 44 47
|
rspcedvd |
|
49 |
36 41 48
|
elrabd |
|
50 |
6
|
a1i |
|
51 |
50
|
eleq2d |
|
52 |
49 51
|
mpbird |
|
53 |
33 52 12
|
3jca |
|
54 |
|
eqid |
|
55 |
38 39 54
|
issubm2 |
|
56 |
37 55
|
syl |
|
57 |
53 56
|
mpbird |
|
58 |
54 38
|
ressbas2 |
|
59 |
33 58
|
syl |
|
60 |
59
|
eleq2d |
|
61 |
21 60
|
mpbird |
|
62 |
|
eqid |
|
63 |
62 54 8
|
submmulg |
|
64 |
57 13 61 63
|
syl3anc |
|
65 |
64
|
eleq1d |
|
66 |
22 65
|
mpbird |
|
67 |
64
|
oveq2d |
|
68 |
10
|
ablgrpd |
|
69 |
17
|
nn0zd |
|
70 |
13
|
nn0zd |
|
71 |
69 70 21
|
3jca |
|
72 |
7 8
|
mulgass |
|
73 |
68 71 72
|
syl2anc |
|
74 |
2
|
nncnd |
|
75 |
3
|
nncnd |
|
76 |
74 75
|
mulcomd |
|
77 |
76
|
oveq1d |
|
78 |
70 69 21
|
3jca |
|
79 |
7 8
|
mulgass |
|
80 |
68 78 79
|
syl2anc |
|
81 |
20
|
simp2d |
|
82 |
81
|
oveq2d |
|
83 |
|
eqid |
|
84 |
7 8 83
|
mulgz |
|
85 |
68 70 84
|
syl2anc |
|
86 |
82 85
|
eqtrd |
|
87 |
80 86
|
eqtrd |
|
88 |
77 87
|
eqtrd |
|
89 |
73 88
|
eqtr3d |
|
90 |
67 89
|
eqtrd |
|
91 |
20
|
simp3d |
|
92 |
|
simp-6r |
|
93 |
92
|
nn0cnd |
|
94 |
93
|
mullidd |
|
95 |
94
|
eqcomd |
|
96 |
|
simpr |
|
97 |
4
|
ad6antr |
|
98 |
96 97
|
eqtr3d |
|
99 |
96 98
|
eqtr2d |
|
100 |
99
|
oveq1d |
|
101 |
95 100
|
eqtrd |
|
102 |
101
|
oveq1d |
|
103 |
96
|
oveq1d |
|
104 |
103
|
oveq1d |
|
105 |
|
simp-4l |
|
106 |
|
simpllr |
|
107 |
|
simplr |
|
108 |
105 106 107
|
jca31 |
|
109 |
|
simpr |
|
110 |
108 109
|
jca |
|
111 |
75
|
ad4antr |
|
112 |
|
simplr |
|
113 |
112
|
zcnd |
|
114 |
111 113
|
mulcld |
|
115 |
74
|
ad4antr |
|
116 |
|
simpr |
|
117 |
116
|
zcnd |
|
118 |
115 117
|
mulcld |
|
119 |
|
simp-4r |
|
120 |
119
|
nn0cnd |
|
121 |
114 118 120
|
adddird |
|
122 |
121
|
oveq1d |
|
123 |
68
|
ad4antr |
|
124 |
70
|
ad4antr |
|
125 |
124 112
|
zmulcld |
|
126 |
119
|
nn0zd |
|
127 |
125 126
|
zmulcld |
|
128 |
69
|
ad4antr |
|
129 |
128 116
|
zmulcld |
|
130 |
129 126
|
zmulcld |
|
131 |
21
|
ad4antr |
|
132 |
127 130 131
|
3jca |
|
133 |
|
eqid |
|
134 |
7 8 133
|
mulgdir |
|
135 |
123 132 134
|
syl2anc |
|
136 |
75
|
ad3antrrr |
|
137 |
|
simpr |
|
138 |
137
|
zcnd |
|
139 |
|
simpllr |
|
140 |
139
|
nn0cnd |
|
141 |
136 138 140
|
mulassd |
|
142 |
138 140
|
mulcld |
|
143 |
136 142
|
mulcomd |
|
144 |
141 143
|
eqtrd |
|
145 |
144
|
oveq1d |
|
146 |
68
|
ad3antrrr |
|
147 |
139
|
nn0zd |
|
148 |
137 147
|
zmulcld |
|
149 |
70
|
ad3antrrr |
|
150 |
21
|
ad3antrrr |
|
151 |
148 149 150
|
3jca |
|
152 |
7 8
|
mulgass |
|
153 |
146 151 152
|
syl2anc |
|
154 |
22
|
ad3antrrr |
|
155 |
137 147 154
|
3jca |
|
156 |
7 8
|
mulgass |
|
157 |
146 155 156
|
syl2anc |
|
158 |
57
|
adantr |
|
159 |
13
|
adantr |
|
160 |
61
|
adantr |
|
161 |
158 159 160 63
|
syl3anc |
|
162 |
161
|
ad2antrr |
|
163 |
162
|
eqcomd |
|
164 |
163
|
oveq2d |
|
165 |
|
simplr |
|
166 |
164 165
|
eqtrd |
|
167 |
166
|
oveq2d |
|
168 |
7 8 83
|
mulgz |
|
169 |
146 137 168
|
syl2anc |
|
170 |
167 169
|
eqtrd |
|
171 |
157 170
|
eqtrd |
|
172 |
153 171
|
eqtrd |
|
173 |
145 172
|
eqtrd |
|
174 |
173
|
adantr |
|
175 |
|
simplll |
|
176 |
175 116
|
jca |
|
177 |
74
|
ad2antrr |
|
178 |
|
simpr |
|
179 |
178
|
zcnd |
|
180 |
|
simplr |
|
181 |
180
|
nn0cnd |
|
182 |
177 179 181
|
mulassd |
|
183 |
179 181
|
mulcld |
|
184 |
177 183
|
mulcomd |
|
185 |
182 184
|
eqtrd |
|
186 |
185
|
oveq1d |
|
187 |
68
|
ad2antrr |
|
188 |
180
|
nn0zd |
|
189 |
178 188
|
zmulcld |
|
190 |
69
|
ad2antrr |
|
191 |
21
|
ad2antrr |
|
192 |
189 190 191
|
3jca |
|
193 |
7 8
|
mulgass |
|
194 |
187 192 193
|
syl2anc |
|
195 |
81
|
ad2antrr |
|
196 |
195
|
oveq2d |
|
197 |
7 8 83
|
mulgz |
|
198 |
187 189 197
|
syl2anc |
|
199 |
196 198
|
eqtrd |
|
200 |
194 199
|
eqtrd |
|
201 |
186 200
|
eqtrd |
|
202 |
176 201
|
syl |
|
203 |
174 202
|
oveq12d |
|
204 |
7 83
|
grpidcl |
|
205 |
123 204
|
syl |
|
206 |
7 133 83 123 205
|
grpridd |
|
207 |
203 206
|
eqtrd |
|
208 |
135 207
|
eqtrd |
|
209 |
122 208
|
eqtrd |
|
210 |
110 209
|
syl |
|
211 |
210
|
adantr |
|
212 |
104 211
|
eqtrd |
|
213 |
102 212
|
eqtrd |
|
214 |
|
simp-5r |
|
215 |
213 214
|
mpd |
|
216 |
|
bezout |
|
217 |
70 69 216
|
syl2anc |
|
218 |
217
|
ad3antrrr |
|
219 |
215 218
|
r19.29vva |
|
220 |
219
|
ex |
|
221 |
220
|
ex |
|
222 |
221
|
ralimdva |
|
223 |
91 222
|
mpd |
|
224 |
66 90 223
|
3jca |
|
225 |
|
nnnn0 |
|
226 |
2 225
|
syl |
|
227 |
11 226 8
|
isprimroot |
|
228 |
224 227
|
mpbird |
|
229 |
14
|
eleq2d |
|
230 |
228 229
|
mpbird |
|