Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq1d |
|
3 |
2
|
eqeq2d |
|
4 |
|
oveq2 |
|
5 |
4
|
oveq2d |
|
6 |
5
|
eqeq2d |
|
7 |
|
simplr |
|
8 |
|
simpllr |
|
9 |
8
|
nnzd |
|
10 |
7 7
|
zmulcld |
|
11 |
|
simpr |
|
12 |
11 11
|
zmulcld |
|
13 |
10 12
|
zaddcld |
|
14 |
|
2z |
|
15 |
14
|
a1i |
|
16 |
13 15
|
zaddcld |
|
17 |
9 16
|
zmulcld |
|
18 |
7 17
|
zaddcld |
|
19 |
7
|
zred |
|
20 |
19
|
renegcld |
|
21 |
20
|
adantr |
|
22 |
|
0red |
|
23 |
17
|
zred |
|
24 |
23
|
adantr |
|
25 |
|
df-neg |
|
26 |
25
|
a1i |
|
27 |
19
|
adantr |
|
28 |
22
|
leidd |
|
29 |
|
simpr |
|
30 |
22 27 28 29
|
addge0d |
|
31 |
22 27 22
|
lesubaddd |
|
32 |
30 31
|
mpbird |
|
33 |
26 32
|
eqbrtrd |
|
34 |
8
|
nnred |
|
35 |
16
|
zred |
|
36 |
8
|
nngt0d |
|
37 |
|
0red |
|
38 |
|
2re |
|
39 |
38
|
a1i |
|
40 |
37 39
|
readdcld |
|
41 |
|
2pos |
|
42 |
|
eqid |
|
43 |
|
2cn |
|
44 |
43
|
addlidi |
|
45 |
42 44
|
eqtr4i |
|
46 |
41 45
|
breqtri |
|
47 |
46
|
a1i |
|
48 |
13
|
zred |
|
49 |
19 19
|
remulcld |
|
50 |
12
|
zred |
|
51 |
19
|
msqge0d |
|
52 |
11
|
zred |
|
53 |
52
|
msqge0d |
|
54 |
49 50 51 53
|
addge0d |
|
55 |
39
|
leidd |
|
56 |
37 39 48 39 54 55
|
le2addd |
|
57 |
37 40 35 47 56
|
ltletrd |
|
58 |
34 35 36 57
|
mulgt0d |
|
59 |
58
|
adantr |
|
60 |
21 22 24 33 59
|
lelttrd |
|
61 |
25
|
a1i |
|
62 |
37
|
adantr |
|
63 |
34
|
adantr |
|
64 |
52
|
adantr |
|
65 |
64 64
|
remulcld |
|
66 |
63 65
|
remulcld |
|
67 |
19
|
adantr |
|
68 |
67 67
|
remulcld |
|
69 |
38
|
a1i |
|
70 |
68 69
|
readdcld |
|
71 |
63 70
|
remulcld |
|
72 |
71 67
|
readdcld |
|
73 |
66 72
|
readdcld |
|
74 |
8
|
adantr |
|
75 |
74
|
nnnn0d |
|
76 |
75
|
nn0ge0d |
|
77 |
64
|
msqge0d |
|
78 |
63 65 76 77
|
mulge0d |
|
79 |
63
|
recnd |
|
80 |
64
|
recnd |
|
81 |
80 80
|
mulcld |
|
82 |
79 81
|
mulcld |
|
83 |
82
|
subidd |
|
84 |
|
1red |
|
85 |
84 70
|
remulcld |
|
86 |
85 67
|
readdcld |
|
87 |
20
|
adantr |
|
88 |
19
|
adantr |
|
89 |
88 88
|
remulcld |
|
90 |
38
|
a1i |
|
91 |
89 90
|
readdcld |
|
92 |
37
|
adantr |
|
93 |
87 87
|
remulcld |
|
94 |
93 90
|
readdcld |
|
95 |
|
1red |
|
96 |
95
|
adantr |
|
97 |
|
0le1 |
|
98 |
97
|
a1i |
|
99 |
|
simpr |
|
100 |
92 96 87 98 99
|
letrd |
|
101 |
87 87 100 99
|
lemulge11d |
|
102 |
93 92
|
readdcld |
|
103 |
93
|
leidd |
|
104 |
88
|
recnd |
|
105 |
104
|
negcld |
|
106 |
105 105
|
mulcld |
|
107 |
106
|
addridd |
|
108 |
107
|
eqcomd |
|
109 |
103 108
|
breqtrd |
|
110 |
41
|
a1i |
|
111 |
92 90 93 110
|
ltadd2dd |
|
112 |
93 102 94 109 111
|
lelttrd |
|
113 |
87 93 94 101 112
|
lelttrd |
|
114 |
104 104
|
mul2negd |
|
115 |
114
|
oveq1d |
|
116 |
113 115
|
breqtrd |
|
117 |
91
|
recnd |
|
118 |
117
|
subid1d |
|
119 |
118
|
eqcomd |
|
120 |
116 119
|
breqtrd |
|
121 |
87 91 92 120
|
ltsub13d |
|
122 |
7
|
adantr |
|
123 |
122
|
zcnd |
|
124 |
123 123
|
mulcld |
|
125 |
|
2cnd |
|
126 |
124 125
|
addcld |
|
127 |
126 123
|
subnegd |
|
128 |
121 127
|
breqtrd |
|
129 |
128
|
ex |
|
130 |
|
0zd |
|
131 |
7 130
|
zltlem1d |
|
132 |
|
df-neg |
|
133 |
132
|
eqcomi |
|
134 |
133
|
a1i |
|
135 |
134
|
breq2d |
|
136 |
131 135
|
bitrd |
|
137 |
95
|
renegcld |
|
138 |
19 137
|
lenegd |
|
139 |
136 138
|
bitrd |
|
140 |
|
1cnd |
|
141 |
140
|
negnegd |
|
142 |
141
|
breq1d |
|
143 |
139 142
|
bitrd |
|
144 |
143
|
biimpd |
|
145 |
144
|
imim1d |
|
146 |
129 145
|
mpd |
|
147 |
146
|
imp |
|
148 |
70
|
recnd |
|
149 |
148
|
mullidd |
|
150 |
149
|
eqcomd |
|
151 |
150
|
oveq1d |
|
152 |
147 151
|
breqtrd |
|
153 |
40
|
adantr |
|
154 |
62
|
leidd |
|
155 |
|
0le2 |
|
156 |
155
|
a1i |
|
157 |
62 69 154 156
|
addge0d |
|
158 |
51
|
adantr |
|
159 |
62 68 69 158
|
leadd1dd |
|
160 |
62 153 70 157 159
|
letrd |
|
161 |
74
|
nnge1d |
|
162 |
84 63 70 160 161
|
lemul1ad |
|
163 |
85 71 67 162
|
leadd1dd |
|
164 |
62 86 72 152 163
|
ltletrd |
|
165 |
83 164
|
eqbrtrd |
|
166 |
66 66 72
|
ltsubadd2d |
|
167 |
165 166
|
mpbid |
|
168 |
62 66 73 78 167
|
lelttrd |
|
169 |
74
|
nncnd |
|
170 |
11
|
adantr |
|
171 |
170
|
zcnd |
|
172 |
171 171
|
mulcld |
|
173 |
169 172
|
mulcld |
|
174 |
67
|
recnd |
|
175 |
174 174
|
mulcld |
|
176 |
|
2cnd |
|
177 |
175 176
|
addcld |
|
178 |
169 177
|
mulcld |
|
179 |
173 178 174
|
addassd |
|
180 |
179
|
eqcomd |
|
181 |
169 172 177
|
adddid |
|
182 |
181
|
eqcomd |
|
183 |
182
|
oveq1d |
|
184 |
180 183
|
eqtrd |
|
185 |
43
|
a1i |
|
186 |
172 175 185
|
addassd |
|
187 |
186
|
eqcomd |
|
188 |
172 175
|
addcomd |
|
189 |
188
|
oveq1d |
|
190 |
187 189
|
eqtrd |
|
191 |
190
|
oveq2d |
|
192 |
191
|
oveq1d |
|
193 |
184 192
|
eqtrd |
|
194 |
168 193
|
breqtrd |
|
195 |
23
|
adantr |
|
196 |
62 67 195
|
ltsubaddd |
|
197 |
194 196
|
mpbird |
|
198 |
61 197
|
eqbrtrd |
|
199 |
198
|
ex |
|
200 |
19 37
|
ltnled |
|
201 |
200
|
bicomd |
|
202 |
201
|
biimpd |
|
203 |
202
|
imim1d |
|
204 |
199 203
|
mpd |
|
205 |
204
|
imp |
|
206 |
60 205
|
pm2.61dan |
|
207 |
20 23
|
posdifd |
|
208 |
206 207
|
mpbid |
|
209 |
17
|
zcnd |
|
210 |
7
|
zcnd |
|
211 |
209 210
|
subnegd |
|
212 |
209 210
|
addcomd |
|
213 |
211 212
|
eqtrd |
|
214 |
208 213
|
breqtrd |
|
215 |
18 214
|
jca |
|
216 |
|
elnnz |
|
217 |
215 216
|
sylibr |
|
218 |
217
|
adantr |
|
219 |
|
simplr |
|
220 |
|
simp-4l |
|
221 |
220
|
nnzd |
|
222 |
|
simpllr |
|
223 |
222 222
|
zmulcld |
|
224 |
219 219
|
zmulcld |
|
225 |
223 224
|
zaddcld |
|
226 |
14
|
a1i |
|
227 |
225 226
|
zaddcld |
|
228 |
221 227
|
zmulcld |
|
229 |
219 228
|
zsubcld |
|
230 |
|
simpr |
|
231 |
|
simplll |
|
232 |
231
|
nncnd |
|
233 |
232 210
|
mulcld |
|
234 |
8
|
nncnd |
|
235 |
210 210
|
mulcld |
|
236 |
11
|
zcnd |
|
237 |
236 236
|
mulcld |
|
238 |
235 237
|
addcld |
|
239 |
|
2cnd |
|
240 |
238 239
|
addcld |
|
241 |
234 240
|
mulcld |
|
242 |
232 241
|
mulcld |
|
243 |
234 236
|
mulcld |
|
244 |
233 242 243
|
ppncand |
|
245 |
|
eqidd |
|
246 |
244 245
|
eqtr2d |
|
247 |
16
|
zcnd |
|
248 |
232 234 247
|
mul12d |
|
249 |
248
|
oveq2d |
|
250 |
249
|
oveq2d |
|
251 |
246 250
|
eqtrd |
|
252 |
232 210 209
|
adddid |
|
253 |
252
|
eqcomd |
|
254 |
232 240
|
mulcld |
|
255 |
234 236 254
|
subdid |
|
256 |
255
|
eqcomd |
|
257 |
253 256
|
oveq12d |
|
258 |
251 257
|
eqtrd |
|
259 |
258
|
adantr |
|
260 |
230 259
|
eqtrd |
|
261 |
3 6 218 229 260
|
2rspcedvdw |
|
262 |
|
nnz |
|
263 |
262
|
adantr |
|
264 |
|
nnz |
|
265 |
264
|
adantl |
|
266 |
263 265
|
jca |
|
267 |
|
bezout |
|
268 |
266 267
|
syl |
|
269 |
261 268
|
r19.29vva |
|