Metamath Proof Explorer


Theorem primrootscoprf

Description: Coprime powers of primitive roots are primitive roots, as a function. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses primrootscoprf.1 F = m R PrimRoots K E R m
primrootscoprf.2 φ R CMnd
primrootscoprf.3 φ K
primrootscoprf.4 φ E
primrootscoprf.5 φ E gcd K = 1
Assertion primrootscoprf φ F : R PrimRoots K R PrimRoots K

Proof

Step Hyp Ref Expression
1 primrootscoprf.1 F = m R PrimRoots K E R m
2 primrootscoprf.2 φ R CMnd
3 primrootscoprf.3 φ K
4 primrootscoprf.4 φ E
5 primrootscoprf.5 φ E gcd K = 1
6 2 adantr φ m R PrimRoots K R CMnd
7 3 adantr φ m R PrimRoots K K
8 4 adantr φ m R PrimRoots K E
9 5 adantr φ m R PrimRoots K E gcd K = 1
10 simpr φ m R PrimRoots K m R PrimRoots K
11 eqid y Base R | x Base R x + R y = 0 R = y Base R | x Base R x + R y = 0 R
12 6 7 8 9 10 11 primrootscoprmpow φ m R PrimRoots K E R m R PrimRoots K
13 12 1 fmptd φ F : R PrimRoots K R PrimRoots K