Metamath Proof Explorer


Theorem primrootscoprf

Description: Coprime powers of primitive roots are primitive roots, as a function. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses primrootscoprf.1
|- F = ( m e. ( R PrimRoots K ) |-> ( E ( .g ` R ) m ) )
primrootscoprf.2
|- ( ph -> R e. CMnd )
primrootscoprf.3
|- ( ph -> K e. NN )
primrootscoprf.4
|- ( ph -> E e. NN )
primrootscoprf.5
|- ( ph -> ( E gcd K ) = 1 )
Assertion primrootscoprf
|- ( ph -> F : ( R PrimRoots K ) --> ( R PrimRoots K ) )

Proof

Step Hyp Ref Expression
1 primrootscoprf.1
 |-  F = ( m e. ( R PrimRoots K ) |-> ( E ( .g ` R ) m ) )
2 primrootscoprf.2
 |-  ( ph -> R e. CMnd )
3 primrootscoprf.3
 |-  ( ph -> K e. NN )
4 primrootscoprf.4
 |-  ( ph -> E e. NN )
5 primrootscoprf.5
 |-  ( ph -> ( E gcd K ) = 1 )
6 2 adantr
 |-  ( ( ph /\ m e. ( R PrimRoots K ) ) -> R e. CMnd )
7 3 adantr
 |-  ( ( ph /\ m e. ( R PrimRoots K ) ) -> K e. NN )
8 4 adantr
 |-  ( ( ph /\ m e. ( R PrimRoots K ) ) -> E e. NN )
9 5 adantr
 |-  ( ( ph /\ m e. ( R PrimRoots K ) ) -> ( E gcd K ) = 1 )
10 simpr
 |-  ( ( ph /\ m e. ( R PrimRoots K ) ) -> m e. ( R PrimRoots K ) )
11 eqid
 |-  { y e. ( Base ` R ) | E. x e. ( Base ` R ) ( x ( +g ` R ) y ) = ( 0g ` R ) } = { y e. ( Base ` R ) | E. x e. ( Base ` R ) ( x ( +g ` R ) y ) = ( 0g ` R ) }
12 6 7 8 9 10 11 primrootscoprmpow
 |-  ( ( ph /\ m e. ( R PrimRoots K ) ) -> ( E ( .g ` R ) m ) e. ( R PrimRoots K ) )
13 12 1 fmptd
 |-  ( ph -> F : ( R PrimRoots K ) --> ( R PrimRoots K ) )