Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprf.1 |
|- F = ( m e. ( R PrimRoots K ) |-> ( E ( .g ` R ) m ) ) |
2 |
|
primrootscoprf.2 |
|- ( ph -> R e. CMnd ) |
3 |
|
primrootscoprf.3 |
|- ( ph -> K e. NN ) |
4 |
|
primrootscoprf.4 |
|- ( ph -> E e. NN ) |
5 |
|
primrootscoprf.5 |
|- ( ph -> ( E gcd K ) = 1 ) |
6 |
2
|
adantr |
|- ( ( ph /\ m e. ( R PrimRoots K ) ) -> R e. CMnd ) |
7 |
3
|
adantr |
|- ( ( ph /\ m e. ( R PrimRoots K ) ) -> K e. NN ) |
8 |
4
|
adantr |
|- ( ( ph /\ m e. ( R PrimRoots K ) ) -> E e. NN ) |
9 |
5
|
adantr |
|- ( ( ph /\ m e. ( R PrimRoots K ) ) -> ( E gcd K ) = 1 ) |
10 |
|
simpr |
|- ( ( ph /\ m e. ( R PrimRoots K ) ) -> m e. ( R PrimRoots K ) ) |
11 |
|
eqid |
|- { y e. ( Base ` R ) | E. x e. ( Base ` R ) ( x ( +g ` R ) y ) = ( 0g ` R ) } = { y e. ( Base ` R ) | E. x e. ( Base ` R ) ( x ( +g ` R ) y ) = ( 0g ` R ) } |
12 |
6 7 8 9 10 11
|
primrootscoprmpow |
|- ( ( ph /\ m e. ( R PrimRoots K ) ) -> ( E ( .g ` R ) m ) e. ( R PrimRoots K ) ) |
13 |
12 1
|
fmptd |
|- ( ph -> F : ( R PrimRoots K ) --> ( R PrimRoots K ) ) |