| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primrootscoprbij.1 |
|- F = ( m e. ( R PrimRoots K ) |-> ( I ( .g ` R ) m ) ) |
| 2 |
|
primrootscoprbij.2 |
|- ( ph -> R e. CMnd ) |
| 3 |
|
primrootscoprbij.3 |
|- ( ph -> K e. NN ) |
| 4 |
|
primrootscoprbij.4 |
|- ( ph -> I e. NN ) |
| 5 |
|
primrootscoprbij.5 |
|- ( ph -> J e. NN ) |
| 6 |
|
primrootscoprbij.6 |
|- ( ph -> Z e. ZZ ) |
| 7 |
|
primrootscoprbij.7 |
|- ( ph -> 1 = ( ( I x. J ) + ( K x. Z ) ) ) |
| 8 |
|
primrootscoprbij.8 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
| 9 |
4
|
nnzd |
|- ( ph -> I e. ZZ ) |
| 10 |
3
|
nnzd |
|- ( ph -> K e. ZZ ) |
| 11 |
5
|
nnzd |
|- ( ph -> J e. ZZ ) |
| 12 |
11 6
|
jca |
|- ( ph -> ( J e. ZZ /\ Z e. ZZ ) ) |
| 13 |
9 10 12
|
jca31 |
|- ( ph -> ( ( I e. ZZ /\ K e. ZZ ) /\ ( J e. ZZ /\ Z e. ZZ ) ) ) |
| 14 |
7
|
eqcomd |
|- ( ph -> ( ( I x. J ) + ( K x. Z ) ) = 1 ) |
| 15 |
13 14
|
jca |
|- ( ph -> ( ( ( I e. ZZ /\ K e. ZZ ) /\ ( J e. ZZ /\ Z e. ZZ ) ) /\ ( ( I x. J ) + ( K x. Z ) ) = 1 ) ) |
| 16 |
|
bezoutr1 |
|- ( ( ( I e. ZZ /\ K e. ZZ ) /\ ( J e. ZZ /\ Z e. ZZ ) ) -> ( ( ( I x. J ) + ( K x. Z ) ) = 1 -> ( I gcd K ) = 1 ) ) |
| 17 |
16
|
imp |
|- ( ( ( ( I e. ZZ /\ K e. ZZ ) /\ ( J e. ZZ /\ Z e. ZZ ) ) /\ ( ( I x. J ) + ( K x. Z ) ) = 1 ) -> ( I gcd K ) = 1 ) |
| 18 |
15 17
|
syl |
|- ( ph -> ( I gcd K ) = 1 ) |
| 19 |
1 2 3 4 18
|
primrootscoprf |
|- ( ph -> F : ( R PrimRoots K ) --> ( R PrimRoots K ) ) |
| 20 |
|
eqid |
|- ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) = ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) |
| 21 |
11 10
|
jca |
|- ( ph -> ( J e. ZZ /\ K e. ZZ ) ) |
| 22 |
9 6
|
jca |
|- ( ph -> ( I e. ZZ /\ Z e. ZZ ) ) |
| 23 |
21 22
|
jca |
|- ( ph -> ( ( J e. ZZ /\ K e. ZZ ) /\ ( I e. ZZ /\ Z e. ZZ ) ) ) |
| 24 |
5
|
nncnd |
|- ( ph -> J e. CC ) |
| 25 |
4
|
nncnd |
|- ( ph -> I e. CC ) |
| 26 |
24 25
|
mulcomd |
|- ( ph -> ( J x. I ) = ( I x. J ) ) |
| 27 |
26
|
oveq1d |
|- ( ph -> ( ( J x. I ) + ( K x. Z ) ) = ( ( I x. J ) + ( K x. Z ) ) ) |
| 28 |
27 14
|
eqtrd |
|- ( ph -> ( ( J x. I ) + ( K x. Z ) ) = 1 ) |
| 29 |
23 28
|
jca |
|- ( ph -> ( ( ( J e. ZZ /\ K e. ZZ ) /\ ( I e. ZZ /\ Z e. ZZ ) ) /\ ( ( J x. I ) + ( K x. Z ) ) = 1 ) ) |
| 30 |
|
bezoutr1 |
|- ( ( ( J e. ZZ /\ K e. ZZ ) /\ ( I e. ZZ /\ Z e. ZZ ) ) -> ( ( ( J x. I ) + ( K x. Z ) ) = 1 -> ( J gcd K ) = 1 ) ) |
| 31 |
30
|
imp |
|- ( ( ( ( J e. ZZ /\ K e. ZZ ) /\ ( I e. ZZ /\ Z e. ZZ ) ) /\ ( ( J x. I ) + ( K x. Z ) ) = 1 ) -> ( J gcd K ) = 1 ) |
| 32 |
29 31
|
syl |
|- ( ph -> ( J gcd K ) = 1 ) |
| 33 |
20 2 3 5 32
|
primrootscoprf |
|- ( ph -> ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) : ( R PrimRoots K ) --> ( R PrimRoots K ) ) |
| 34 |
1
|
a1i |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> F = ( m e. ( R PrimRoots K ) |-> ( I ( .g ` R ) m ) ) ) |
| 35 |
|
simpr |
|- ( ( ( ph /\ x e. ( R PrimRoots K ) ) /\ m = x ) -> m = x ) |
| 36 |
35
|
oveq2d |
|- ( ( ( ph /\ x e. ( R PrimRoots K ) ) /\ m = x ) -> ( I ( .g ` R ) m ) = ( I ( .g ` R ) x ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> x e. ( R PrimRoots K ) ) |
| 38 |
2
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> R e. Mnd ) |
| 40 |
4
|
nnnn0d |
|- ( ph -> I e. NN0 ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> I e. NN0 ) |
| 42 |
3
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 43 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 44 |
2 42 43
|
isprimroot |
|- ( ph -> ( x e. ( R PrimRoots K ) <-> ( x e. ( Base ` R ) /\ ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 45 |
44
|
biimpd |
|- ( ph -> ( x e. ( R PrimRoots K ) -> ( x e. ( Base ` R ) /\ ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 46 |
45
|
imp |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( x e. ( Base ` R ) /\ ( K ( .g ` R ) x ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) x ) = ( 0g ` R ) -> K || l ) ) ) |
| 47 |
46
|
simp1d |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> x e. ( Base ` R ) ) |
| 48 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 49 |
48 43
|
mulgnn0cl |
|- ( ( R e. Mnd /\ I e. NN0 /\ x e. ( Base ` R ) ) -> ( I ( .g ` R ) x ) e. ( Base ` R ) ) |
| 50 |
39 41 47 49
|
syl3anc |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( I ( .g ` R ) x ) e. ( Base ` R ) ) |
| 51 |
34 36 37 50
|
fvmptd |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( F ` x ) = ( I ( .g ` R ) x ) ) |
| 52 |
51
|
fveq2d |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` ( F ` x ) ) = ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` ( I ( .g ` R ) x ) ) ) |
| 53 |
|
eqidd |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) = ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ) |
| 54 |
|
simpr |
|- ( ( ( ph /\ x e. ( R PrimRoots K ) ) /\ n = ( I ( .g ` R ) x ) ) -> n = ( I ( .g ` R ) x ) ) |
| 55 |
54
|
oveq2d |
|- ( ( ( ph /\ x e. ( R PrimRoots K ) ) /\ n = ( I ( .g ` R ) x ) ) -> ( J ( .g ` R ) n ) = ( J ( .g ` R ) ( I ( .g ` R ) x ) ) ) |
| 56 |
2
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> R e. CMnd ) |
| 57 |
3
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> K e. NN ) |
| 58 |
4
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> I e. NN ) |
| 59 |
18
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( I gcd K ) = 1 ) |
| 60 |
|
eqid |
|- { s e. ( Base ` R ) | E. t e. ( Base ` R ) ( t ( +g ` R ) s ) = ( 0g ` R ) } = { s e. ( Base ` R ) | E. t e. ( Base ` R ) ( t ( +g ` R ) s ) = ( 0g ` R ) } |
| 61 |
56 57 58 59 37 60
|
primrootscoprmpow |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( I ( .g ` R ) x ) e. ( R PrimRoots K ) ) |
| 62 |
5
|
nnnn0d |
|- ( ph -> J e. NN0 ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> J e. NN0 ) |
| 64 |
48 43
|
mulgnn0cl |
|- ( ( R e. Mnd /\ J e. NN0 /\ ( I ( .g ` R ) x ) e. ( Base ` R ) ) -> ( J ( .g ` R ) ( I ( .g ` R ) x ) ) e. ( Base ` R ) ) |
| 65 |
39 63 50 64
|
syl3anc |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( J ( .g ` R ) ( I ( .g ` R ) x ) ) e. ( Base ` R ) ) |
| 66 |
53 55 61 65
|
fvmptd |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` ( I ( .g ` R ) x ) ) = ( J ( .g ` R ) ( I ( .g ` R ) x ) ) ) |
| 67 |
63 41 47
|
3jca |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( J e. NN0 /\ I e. NN0 /\ x e. ( Base ` R ) ) ) |
| 68 |
48 43
|
mulgnn0ass |
|- ( ( R e. Mnd /\ ( J e. NN0 /\ I e. NN0 /\ x e. ( Base ` R ) ) ) -> ( ( J x. I ) ( .g ` R ) x ) = ( J ( .g ` R ) ( I ( .g ` R ) x ) ) ) |
| 69 |
39 67 68
|
syl2anc |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( ( J x. I ) ( .g ` R ) x ) = ( J ( .g ` R ) ( I ( .g ` R ) x ) ) ) |
| 70 |
2 3 8
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
| 71 |
70
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
| 72 |
71
|
eleq2d |
|- ( ph -> ( x e. ( R PrimRoots K ) <-> x e. ( ( R |`s U ) PrimRoots K ) ) ) |
| 73 |
72
|
biimpd |
|- ( ph -> ( x e. ( R PrimRoots K ) -> x e. ( ( R |`s U ) PrimRoots K ) ) ) |
| 74 |
70
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
| 75 |
|
ablgrp |
|- ( ( R |`s U ) e. Abel -> ( R |`s U ) e. Grp ) |
| 76 |
74 75
|
syl |
|- ( ph -> ( R |`s U ) e. Grp ) |
| 77 |
|
grpmnd |
|- ( ( R |`s U ) e. Grp -> ( R |`s U ) e. Mnd ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( R |`s U ) e. Mnd ) |
| 79 |
38 78
|
jca |
|- ( ph -> ( R e. Mnd /\ ( R |`s U ) e. Mnd ) ) |
| 80 |
8
|
a1i |
|- ( ph -> U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
| 81 |
80
|
eleq2d |
|- ( ph -> ( f e. U <-> f e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) ) |
| 82 |
81
|
biimpd |
|- ( ph -> ( f e. U -> f e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) ) |
| 83 |
82
|
imp |
|- ( ( ph /\ f e. U ) -> f e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
| 84 |
|
oveq2 |
|- ( a = f -> ( i ( +g ` R ) a ) = ( i ( +g ` R ) f ) ) |
| 85 |
84
|
eqeq1d |
|- ( a = f -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( i ( +g ` R ) f ) = ( 0g ` R ) ) ) |
| 86 |
85
|
rexbidv |
|- ( a = f -> ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. i e. ( Base ` R ) ( i ( +g ` R ) f ) = ( 0g ` R ) ) ) |
| 87 |
86
|
elrab |
|- ( f e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } <-> ( f e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) f ) = ( 0g ` R ) ) ) |
| 88 |
87
|
biimpi |
|- ( f e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } -> ( f e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i ( +g ` R ) f ) = ( 0g ` R ) ) ) |
| 89 |
88
|
simpld |
|- ( f e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } -> f e. ( Base ` R ) ) |
| 90 |
83 89
|
syl |
|- ( ( ph /\ f e. U ) -> f e. ( Base ` R ) ) |
| 91 |
90
|
ex |
|- ( ph -> ( f e. U -> f e. ( Base ` R ) ) ) |
| 92 |
91
|
ssrdv |
|- ( ph -> U C_ ( Base ` R ) ) |
| 93 |
|
oveq2 |
|- ( a = ( 0g ` R ) -> ( i ( +g ` R ) a ) = ( i ( +g ` R ) ( 0g ` R ) ) ) |
| 94 |
93
|
eqeq1d |
|- ( a = ( 0g ` R ) -> ( ( i ( +g ` R ) a ) = ( 0g ` R ) <-> ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 95 |
94
|
rexbidv |
|- ( a = ( 0g ` R ) -> ( E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) <-> E. i e. ( Base ` R ) ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 96 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 97 |
48 96
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 98 |
38 97
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 99 |
|
simpr |
|- ( ( ph /\ i = ( 0g ` R ) ) -> i = ( 0g ` R ) ) |
| 100 |
99
|
oveq1d |
|- ( ( ph /\ i = ( 0g ` R ) ) -> ( i ( +g ` R ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) ) |
| 101 |
100
|
eqeq1d |
|- ( ( ph /\ i = ( 0g ` R ) ) -> ( ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) <-> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 102 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 103 |
48 102 96
|
mndlid |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 104 |
38 98 103
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 105 |
98 101 104
|
rspcedvd |
|- ( ph -> E. i e. ( Base ` R ) ( i ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 106 |
95 98 105
|
elrabd |
|- ( ph -> ( 0g ` R ) e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) |
| 107 |
80
|
eleq2d |
|- ( ph -> ( ( 0g ` R ) e. U <-> ( 0g ` R ) e. { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } ) ) |
| 108 |
106 107
|
mpbird |
|- ( ph -> ( 0g ` R ) e. U ) |
| 109 |
92 108
|
jca |
|- ( ph -> ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U ) ) |
| 110 |
79 109
|
jca |
|- ( ph -> ( ( R e. Mnd /\ ( R |`s U ) e. Mnd ) /\ ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U ) ) ) |
| 111 |
48 96
|
issubmndb |
|- ( U e. ( SubMnd ` R ) <-> ( ( R e. Mnd /\ ( R |`s U ) e. Mnd ) /\ ( U C_ ( Base ` R ) /\ ( 0g ` R ) e. U ) ) ) |
| 112 |
110 111
|
sylibr |
|- ( ph -> U e. ( SubMnd ` R ) ) |
| 113 |
112
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> U e. ( SubMnd ` R ) ) |
| 114 |
62
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> J e. NN0 ) |
| 115 |
40
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> I e. NN0 ) |
| 116 |
114 115
|
nn0mulcld |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( J x. I ) e. NN0 ) |
| 117 |
74
|
ablcmnd |
|- ( ph -> ( R |`s U ) e. CMnd ) |
| 118 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
| 119 |
117 42 118
|
isprimroot |
|- ( ph -> ( x e. ( ( R |`s U ) PrimRoots K ) <-> ( x e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 120 |
119
|
biimpd |
|- ( ph -> ( x e. ( ( R |`s U ) PrimRoots K ) -> ( x e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 121 |
120
|
imp |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( x e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 122 |
121
|
simp1d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> x e. ( Base ` ( R |`s U ) ) ) |
| 123 |
|
eqid |
|- ( R |`s U ) = ( R |`s U ) |
| 124 |
123 48
|
ressbas2 |
|- ( U C_ ( Base ` R ) -> U = ( Base ` ( R |`s U ) ) ) |
| 125 |
92 124
|
syl |
|- ( ph -> U = ( Base ` ( R |`s U ) ) ) |
| 126 |
125
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> U = ( Base ` ( R |`s U ) ) ) |
| 127 |
126
|
eleq2d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( x e. U <-> x e. ( Base ` ( R |`s U ) ) ) ) |
| 128 |
122 127
|
mpbird |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> x e. U ) |
| 129 |
43 123 118
|
submmulg |
|- ( ( U e. ( SubMnd ` R ) /\ ( J x. I ) e. NN0 /\ x e. U ) -> ( ( J x. I ) ( .g ` R ) x ) = ( ( J x. I ) ( .g ` ( R |`s U ) ) x ) ) |
| 130 |
113 116 128 129
|
syl3anc |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( J x. I ) ( .g ` R ) x ) = ( ( J x. I ) ( .g ` ( R |`s U ) ) x ) ) |
| 131 |
26
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( J x. I ) = ( I x. J ) ) |
| 132 |
25 24
|
mulcld |
|- ( ph -> ( I x. J ) e. CC ) |
| 133 |
3
|
nncnd |
|- ( ph -> K e. CC ) |
| 134 |
6
|
zcnd |
|- ( ph -> Z e. CC ) |
| 135 |
133 134
|
mulcld |
|- ( ph -> ( K x. Z ) e. CC ) |
| 136 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 137 |
132 135 136
|
addlsub |
|- ( ph -> ( ( ( I x. J ) + ( K x. Z ) ) = 1 <-> ( I x. J ) = ( 1 - ( K x. Z ) ) ) ) |
| 138 |
14 137
|
mpbid |
|- ( ph -> ( I x. J ) = ( 1 - ( K x. Z ) ) ) |
| 139 |
133 134
|
mulcomd |
|- ( ph -> ( K x. Z ) = ( Z x. K ) ) |
| 140 |
139
|
oveq2d |
|- ( ph -> ( 1 - ( K x. Z ) ) = ( 1 - ( Z x. K ) ) ) |
| 141 |
138 140
|
eqtrd |
|- ( ph -> ( I x. J ) = ( 1 - ( Z x. K ) ) ) |
| 142 |
139 135
|
eqeltrrd |
|- ( ph -> ( Z x. K ) e. CC ) |
| 143 |
136 142
|
negsubd |
|- ( ph -> ( 1 + -u ( Z x. K ) ) = ( 1 - ( Z x. K ) ) ) |
| 144 |
143
|
eqcomd |
|- ( ph -> ( 1 - ( Z x. K ) ) = ( 1 + -u ( Z x. K ) ) ) |
| 145 |
141 144
|
eqtrd |
|- ( ph -> ( I x. J ) = ( 1 + -u ( Z x. K ) ) ) |
| 146 |
145
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( I x. J ) = ( 1 + -u ( Z x. K ) ) ) |
| 147 |
131 146
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( J x. I ) = ( 1 + -u ( Z x. K ) ) ) |
| 148 |
147
|
oveq1d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( J x. I ) ( .g ` ( R |`s U ) ) x ) = ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) x ) ) |
| 149 |
76
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( R |`s U ) e. Grp ) |
| 150 |
|
1zzd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> 1 e. ZZ ) |
| 151 |
6
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> Z e. ZZ ) |
| 152 |
10
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> K e. ZZ ) |
| 153 |
151 152
|
zmulcld |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( Z x. K ) e. ZZ ) |
| 154 |
153
|
znegcld |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> -u ( Z x. K ) e. ZZ ) |
| 155 |
150 154 122
|
3jca |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( 1 e. ZZ /\ -u ( Z x. K ) e. ZZ /\ x e. ( Base ` ( R |`s U ) ) ) ) |
| 156 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
| 157 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
| 158 |
156 118 157
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( 1 e. ZZ /\ -u ( Z x. K ) e. ZZ /\ x e. ( Base ` ( R |`s U ) ) ) ) -> ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) x ) = ( ( 1 ( .g ` ( R |`s U ) ) x ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) |
| 159 |
149 155 158
|
syl2anc |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) x ) = ( ( 1 ( .g ` ( R |`s U ) ) x ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) |
| 160 |
156 118
|
mulg1 |
|- ( x e. ( Base ` ( R |`s U ) ) -> ( 1 ( .g ` ( R |`s U ) ) x ) = x ) |
| 161 |
122 160
|
syl |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( 1 ( .g ` ( R |`s U ) ) x ) = x ) |
| 162 |
|
eqid |
|- ( invg ` ( R |`s U ) ) = ( invg ` ( R |`s U ) ) |
| 163 |
156 118 162
|
mulgneg |
|- ( ( ( R |`s U ) e. Grp /\ ( Z x. K ) e. ZZ /\ x e. ( Base ` ( R |`s U ) ) ) -> ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) x ) = ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) |
| 164 |
149 153 122 163
|
syl3anc |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) x ) = ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) |
| 165 |
161 164
|
oveq12d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( 1 ( .g ` ( R |`s U ) ) x ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) = ( x ( +g ` ( R |`s U ) ) ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) ) |
| 166 |
151 152 122
|
3jca |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( Z e. ZZ /\ K e. ZZ /\ x e. ( Base ` ( R |`s U ) ) ) ) |
| 167 |
156 118
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( Z e. ZZ /\ K e. ZZ /\ x e. ( Base ` ( R |`s U ) ) ) ) -> ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) = ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) x ) ) ) |
| 168 |
149 166 167
|
syl2anc |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) = ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) x ) ) ) |
| 169 |
121
|
simp2d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( K ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) ) |
| 170 |
169
|
oveq2d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) x ) ) = ( Z ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 171 |
|
eqid |
|- ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) |
| 172 |
156 118 171
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ Z e. ZZ ) -> ( Z ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 173 |
149 151 172
|
syl2anc |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( Z ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 174 |
170 173
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) x ) ) = ( 0g ` ( R |`s U ) ) ) |
| 175 |
168 174
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) = ( 0g ` ( R |`s U ) ) ) |
| 176 |
175
|
fveq2d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) = ( ( invg ` ( R |`s U ) ) ` ( 0g ` ( R |`s U ) ) ) ) |
| 177 |
171 162
|
grpinvid |
|- ( ( R |`s U ) e. Grp -> ( ( invg ` ( R |`s U ) ) ` ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 178 |
76 177
|
syl |
|- ( ph -> ( ( invg ` ( R |`s U ) ) ` ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 179 |
178
|
adantr |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( invg ` ( R |`s U ) ) ` ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 180 |
176 179
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) = ( 0g ` ( R |`s U ) ) ) |
| 181 |
180
|
oveq2d |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( x ( +g ` ( R |`s U ) ) ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) = ( x ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 182 |
149 77
|
syl |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( R |`s U ) e. Mnd ) |
| 183 |
156 157 171
|
mndrid |
|- ( ( ( R |`s U ) e. Mnd /\ x e. ( Base ` ( R |`s U ) ) ) -> ( x ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = x ) |
| 184 |
182 122 183
|
syl2anc |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( x ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = x ) |
| 185 |
181 184
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( x ( +g ` ( R |`s U ) ) ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) ) = x ) |
| 186 |
165 185
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( 1 ( .g ` ( R |`s U ) ) x ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) x ) ) = x ) |
| 187 |
159 186
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) x ) = x ) |
| 188 |
148 187
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( J x. I ) ( .g ` ( R |`s U ) ) x ) = x ) |
| 189 |
130 188
|
eqtrd |
|- ( ( ph /\ x e. ( ( R |`s U ) PrimRoots K ) ) -> ( ( J x. I ) ( .g ` R ) x ) = x ) |
| 190 |
189
|
ex |
|- ( ph -> ( x e. ( ( R |`s U ) PrimRoots K ) -> ( ( J x. I ) ( .g ` R ) x ) = x ) ) |
| 191 |
190
|
imim2d |
|- ( ph -> ( ( x e. ( R PrimRoots K ) -> x e. ( ( R |`s U ) PrimRoots K ) ) -> ( x e. ( R PrimRoots K ) -> ( ( J x. I ) ( .g ` R ) x ) = x ) ) ) |
| 192 |
73 191
|
mpd |
|- ( ph -> ( x e. ( R PrimRoots K ) -> ( ( J x. I ) ( .g ` R ) x ) = x ) ) |
| 193 |
192
|
imp |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( ( J x. I ) ( .g ` R ) x ) = x ) |
| 194 |
69 193
|
eqtr3d |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( J ( .g ` R ) ( I ( .g ` R ) x ) ) = x ) |
| 195 |
66 194
|
eqtrd |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` ( I ( .g ` R ) x ) ) = x ) |
| 196 |
52 195
|
eqtrd |
|- ( ( ph /\ x e. ( R PrimRoots K ) ) -> ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` ( F ` x ) ) = x ) |
| 197 |
196
|
ralrimiva |
|- ( ph -> A. x e. ( R PrimRoots K ) ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` ( F ` x ) ) = x ) |
| 198 |
|
eqidd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) = ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ) |
| 199 |
|
simpr |
|- ( ( ( ph /\ y e. ( R PrimRoots K ) ) /\ n = y ) -> n = y ) |
| 200 |
199
|
oveq2d |
|- ( ( ( ph /\ y e. ( R PrimRoots K ) ) /\ n = y ) -> ( J ( .g ` R ) n ) = ( J ( .g ` R ) y ) ) |
| 201 |
|
simpr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> y e. ( R PrimRoots K ) ) |
| 202 |
38
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> R e. Mnd ) |
| 203 |
62
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> J e. NN0 ) |
| 204 |
2 42 43
|
isprimroot |
|- ( ph -> ( y e. ( R PrimRoots K ) <-> ( y e. ( Base ` R ) /\ ( K ( .g ` R ) y ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) y ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 205 |
204
|
biimpd |
|- ( ph -> ( y e. ( R PrimRoots K ) -> ( y e. ( Base ` R ) /\ ( K ( .g ` R ) y ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) y ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 206 |
205
|
imp |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( y e. ( Base ` R ) /\ ( K ( .g ` R ) y ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) y ) = ( 0g ` R ) -> K || l ) ) ) |
| 207 |
206
|
simp1d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> y e. ( Base ` R ) ) |
| 208 |
48 43
|
mulgnn0cl |
|- ( ( R e. Mnd /\ J e. NN0 /\ y e. ( Base ` R ) ) -> ( J ( .g ` R ) y ) e. ( Base ` R ) ) |
| 209 |
202 203 207 208
|
syl3anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( J ( .g ` R ) y ) e. ( Base ` R ) ) |
| 210 |
198 200 201 209
|
fvmptd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` y ) = ( J ( .g ` R ) y ) ) |
| 211 |
210
|
fveq2d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( F ` ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` y ) ) = ( F ` ( J ( .g ` R ) y ) ) ) |
| 212 |
1
|
a1i |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> F = ( m e. ( R PrimRoots K ) |-> ( I ( .g ` R ) m ) ) ) |
| 213 |
|
simpr |
|- ( ( ( ph /\ y e. ( R PrimRoots K ) ) /\ m = ( J ( .g ` R ) y ) ) -> m = ( J ( .g ` R ) y ) ) |
| 214 |
213
|
oveq2d |
|- ( ( ( ph /\ y e. ( R PrimRoots K ) ) /\ m = ( J ( .g ` R ) y ) ) -> ( I ( .g ` R ) m ) = ( I ( .g ` R ) ( J ( .g ` R ) y ) ) ) |
| 215 |
2
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> R e. CMnd ) |
| 216 |
3
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> K e. NN ) |
| 217 |
5
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> J e. NN ) |
| 218 |
32
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( J gcd K ) = 1 ) |
| 219 |
215 216 217 218 201 60
|
primrootscoprmpow |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( J ( .g ` R ) y ) e. ( R PrimRoots K ) ) |
| 220 |
40
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> I e. NN0 ) |
| 221 |
48 43
|
mulgnn0cl |
|- ( ( R e. Mnd /\ I e. NN0 /\ ( J ( .g ` R ) y ) e. ( Base ` R ) ) -> ( I ( .g ` R ) ( J ( .g ` R ) y ) ) e. ( Base ` R ) ) |
| 222 |
202 220 209 221
|
syl3anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( I ( .g ` R ) ( J ( .g ` R ) y ) ) e. ( Base ` R ) ) |
| 223 |
212 214 219 222
|
fvmptd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( F ` ( J ( .g ` R ) y ) ) = ( I ( .g ` R ) ( J ( .g ` R ) y ) ) ) |
| 224 |
220 203 207
|
3jca |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( I e. NN0 /\ J e. NN0 /\ y e. ( Base ` R ) ) ) |
| 225 |
48 43
|
mulgnn0ass |
|- ( ( R e. Mnd /\ ( I e. NN0 /\ J e. NN0 /\ y e. ( Base ` R ) ) ) -> ( ( I x. J ) ( .g ` R ) y ) = ( I ( .g ` R ) ( J ( .g ` R ) y ) ) ) |
| 226 |
202 224 225
|
syl2anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( I x. J ) ( .g ` R ) y ) = ( I ( .g ` R ) ( J ( .g ` R ) y ) ) ) |
| 227 |
112
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> U e. ( SubMnd ` R ) ) |
| 228 |
220 203
|
nn0mulcld |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( I x. J ) e. NN0 ) |
| 229 |
128
|
ex |
|- ( ph -> ( x e. ( ( R |`s U ) PrimRoots K ) -> x e. U ) ) |
| 230 |
229
|
ssrdv |
|- ( ph -> ( ( R |`s U ) PrimRoots K ) C_ U ) |
| 231 |
71
|
sseq1d |
|- ( ph -> ( ( R PrimRoots K ) C_ U <-> ( ( R |`s U ) PrimRoots K ) C_ U ) ) |
| 232 |
230 231
|
mpbird |
|- ( ph -> ( R PrimRoots K ) C_ U ) |
| 233 |
232
|
sseld |
|- ( ph -> ( y e. ( R PrimRoots K ) -> y e. U ) ) |
| 234 |
233
|
imp |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> y e. U ) |
| 235 |
43 123 118
|
submmulg |
|- ( ( U e. ( SubMnd ` R ) /\ ( I x. J ) e. NN0 /\ y e. U ) -> ( ( I x. J ) ( .g ` R ) y ) = ( ( I x. J ) ( .g ` ( R |`s U ) ) y ) ) |
| 236 |
227 228 234 235
|
syl3anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( I x. J ) ( .g ` R ) y ) = ( ( I x. J ) ( .g ` ( R |`s U ) ) y ) ) |
| 237 |
145
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( I x. J ) = ( 1 + -u ( Z x. K ) ) ) |
| 238 |
237
|
oveq1d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( I x. J ) ( .g ` ( R |`s U ) ) y ) = ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) y ) ) |
| 239 |
76
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( R |`s U ) e. Grp ) |
| 240 |
|
1zzd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> 1 e. ZZ ) |
| 241 |
6
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> Z e. ZZ ) |
| 242 |
10
|
adantr |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> K e. ZZ ) |
| 243 |
241 242
|
zmulcld |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( Z x. K ) e. ZZ ) |
| 244 |
243
|
znegcld |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> -u ( Z x. K ) e. ZZ ) |
| 245 |
232 125
|
sseqtrd |
|- ( ph -> ( R PrimRoots K ) C_ ( Base ` ( R |`s U ) ) ) |
| 246 |
245
|
sseld |
|- ( ph -> ( y e. ( R PrimRoots K ) -> y e. ( Base ` ( R |`s U ) ) ) ) |
| 247 |
246
|
imp |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> y e. ( Base ` ( R |`s U ) ) ) |
| 248 |
240 244 247
|
3jca |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( 1 e. ZZ /\ -u ( Z x. K ) e. ZZ /\ y e. ( Base ` ( R |`s U ) ) ) ) |
| 249 |
156 118 157
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( 1 e. ZZ /\ -u ( Z x. K ) e. ZZ /\ y e. ( Base ` ( R |`s U ) ) ) ) -> ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) y ) = ( ( 1 ( .g ` ( R |`s U ) ) y ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) ) |
| 250 |
239 248 249
|
syl2anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) y ) = ( ( 1 ( .g ` ( R |`s U ) ) y ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) ) |
| 251 |
156 118
|
mulg1 |
|- ( y e. ( Base ` ( R |`s U ) ) -> ( 1 ( .g ` ( R |`s U ) ) y ) = y ) |
| 252 |
247 251
|
syl |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( 1 ( .g ` ( R |`s U ) ) y ) = y ) |
| 253 |
156 118 162
|
mulgneg |
|- ( ( ( R |`s U ) e. Grp /\ ( Z x. K ) e. ZZ /\ y e. ( Base ` ( R |`s U ) ) ) -> ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) = ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) ) |
| 254 |
239 243 247 253
|
syl3anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) = ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) ) |
| 255 |
241 242 247
|
3jca |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( Z e. ZZ /\ K e. ZZ /\ y e. ( Base ` ( R |`s U ) ) ) ) |
| 256 |
156 118
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( Z e. ZZ /\ K e. ZZ /\ y e. ( Base ` ( R |`s U ) ) ) ) -> ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) = ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) y ) ) ) |
| 257 |
239 255 256
|
syl2anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) = ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) y ) ) ) |
| 258 |
117 42 118
|
isprimroot |
|- ( ph -> ( y e. ( ( R |`s U ) PrimRoots K ) <-> ( y e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 259 |
258
|
biimpd |
|- ( ph -> ( y e. ( ( R |`s U ) PrimRoots K ) -> ( y e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 260 |
259
|
imp |
|- ( ( ph /\ y e. ( ( R |`s U ) PrimRoots K ) ) -> ( y e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 261 |
260
|
simp2d |
|- ( ( ph /\ y e. ( ( R |`s U ) PrimRoots K ) ) -> ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) |
| 262 |
261
|
ex |
|- ( ph -> ( y e. ( ( R |`s U ) PrimRoots K ) -> ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) ) |
| 263 |
71
|
eleq2d |
|- ( ph -> ( y e. ( R PrimRoots K ) <-> y e. ( ( R |`s U ) PrimRoots K ) ) ) |
| 264 |
263
|
imbi1d |
|- ( ph -> ( ( y e. ( R PrimRoots K ) -> ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) <-> ( y e. ( ( R |`s U ) PrimRoots K ) -> ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) ) ) |
| 265 |
262 264
|
mpbird |
|- ( ph -> ( y e. ( R PrimRoots K ) -> ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) ) |
| 266 |
265
|
imp |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( K ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) |
| 267 |
266
|
oveq2d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) y ) ) = ( Z ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 268 |
239 241 172
|
syl2anc |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( Z ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 269 |
267 268
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( Z ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) y ) ) = ( 0g ` ( R |`s U ) ) ) |
| 270 |
257 269
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) |
| 271 |
270
|
fveq2d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) = ( ( invg ` ( R |`s U ) ) ` ( 0g ` ( R |`s U ) ) ) ) |
| 272 |
239 177
|
syl |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( invg ` ( R |`s U ) ) ` ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
| 273 |
271 272
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( invg ` ( R |`s U ) ) ` ( ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) = ( 0g ` ( R |`s U ) ) ) |
| 274 |
254 273
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) = ( 0g ` ( R |`s U ) ) ) |
| 275 |
252 274
|
oveq12d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( 1 ( .g ` ( R |`s U ) ) y ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) = ( y ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
| 276 |
156 157 171 239 247
|
grpridd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( y ( +g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = y ) |
| 277 |
275 276
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( 1 ( .g ` ( R |`s U ) ) y ) ( +g ` ( R |`s U ) ) ( -u ( Z x. K ) ( .g ` ( R |`s U ) ) y ) ) = y ) |
| 278 |
250 277
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( 1 + -u ( Z x. K ) ) ( .g ` ( R |`s U ) ) y ) = y ) |
| 279 |
238 278
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( I x. J ) ( .g ` ( R |`s U ) ) y ) = y ) |
| 280 |
236 279
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( ( I x. J ) ( .g ` R ) y ) = y ) |
| 281 |
226 280
|
eqtr3d |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( I ( .g ` R ) ( J ( .g ` R ) y ) ) = y ) |
| 282 |
223 281
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( F ` ( J ( .g ` R ) y ) ) = y ) |
| 283 |
211 282
|
eqtrd |
|- ( ( ph /\ y e. ( R PrimRoots K ) ) -> ( F ` ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` y ) ) = y ) |
| 284 |
283
|
ralrimiva |
|- ( ph -> A. y e. ( R PrimRoots K ) ( F ` ( ( n e. ( R PrimRoots K ) |-> ( J ( .g ` R ) n ) ) ` y ) ) = y ) |
| 285 |
19 33 197 284
|
2fvidf1od |
|- ( ph -> F : ( R PrimRoots K ) -1-1-onto-> ( R PrimRoots K ) ) |