Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprbij2.1 |
|- F = ( m e. ( R PrimRoots K ) |-> ( I ( .g ` R ) m ) ) |
2 |
|
primrootscoprbij2.2 |
|- ( ph -> R e. CMnd ) |
3 |
|
primrootscoprbij2.3 |
|- ( ph -> K e. NN ) |
4 |
|
primrootscoprbij2.4 |
|- ( ph -> I e. NN ) |
5 |
|
primrootscoprbij2.5 |
|- ( ph -> ( I gcd K ) = 1 ) |
6 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> R e. CMnd ) |
7 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> K e. NN ) |
8 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> I e. NN ) |
9 |
|
simpllr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> x e. NN ) |
10 |
|
simplr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> y e. ZZ ) |
11 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> ( I gcd K ) = 1 ) |
12 |
|
simpr |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) |
13 |
11 12
|
eqtr3d |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> 1 = ( ( I x. x ) + ( K x. y ) ) ) |
14 |
|
eqid |
|- { w e. ( Base ` R ) | E. z e. ( Base ` R ) ( z ( +g ` R ) w ) = ( 0g ` R ) } = { w e. ( Base ` R ) | E. z e. ( Base ` R ) ( z ( +g ` R ) w ) = ( 0g ` R ) } |
15 |
1 6 7 8 9 10 13 14
|
primrootscoprbij |
|- ( ( ( ( ph /\ x e. NN ) /\ y e. ZZ ) /\ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) -> F : ( R PrimRoots K ) -1-1-onto-> ( R PrimRoots K ) ) |
16 |
4 3
|
jca |
|- ( ph -> ( I e. NN /\ K e. NN ) ) |
17 |
|
posbezout |
|- ( ( I e. NN /\ K e. NN ) -> E. x e. NN E. y e. ZZ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> E. x e. NN E. y e. ZZ ( I gcd K ) = ( ( I x. x ) + ( K x. y ) ) ) |
19 |
15 18
|
r19.29vva |
|- ( ph -> F : ( R PrimRoots K ) -1-1-onto-> ( R PrimRoots K ) ) |