Metamath Proof Explorer


Theorem primrootscoprbij2

Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses primrootscoprbij2.1 F = m R PrimRoots K I R m
primrootscoprbij2.2 φ R CMnd
primrootscoprbij2.3 φ K
primrootscoprbij2.4 φ I
primrootscoprbij2.5 φ I gcd K = 1
Assertion primrootscoprbij2 φ F : R PrimRoots K 1-1 onto R PrimRoots K

Proof

Step Hyp Ref Expression
1 primrootscoprbij2.1 F = m R PrimRoots K I R m
2 primrootscoprbij2.2 φ R CMnd
3 primrootscoprbij2.3 φ K
4 primrootscoprbij2.4 φ I
5 primrootscoprbij2.5 φ I gcd K = 1
6 2 ad3antrrr φ x y I gcd K = I x + K y R CMnd
7 3 ad3antrrr φ x y I gcd K = I x + K y K
8 4 ad3antrrr φ x y I gcd K = I x + K y I
9 simpllr φ x y I gcd K = I x + K y x
10 simplr φ x y I gcd K = I x + K y y
11 5 ad3antrrr φ x y I gcd K = I x + K y I gcd K = 1
12 simpr φ x y I gcd K = I x + K y I gcd K = I x + K y
13 11 12 eqtr3d φ x y I gcd K = I x + K y 1 = I x + K y
14 eqid w Base R | z Base R z + R w = 0 R = w Base R | z Base R z + R w = 0 R
15 1 6 7 8 9 10 13 14 primrootscoprbij φ x y I gcd K = I x + K y F : R PrimRoots K 1-1 onto R PrimRoots K
16 4 3 jca φ I K
17 posbezout I K x y I gcd K = I x + K y
18 16 17 syl φ x y I gcd K = I x + K y
19 15 18 r19.29vva φ F : R PrimRoots K 1-1 onto R PrimRoots K