Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprbij.1 |
|
2 |
|
primrootscoprbij.2 |
|
3 |
|
primrootscoprbij.3 |
|
4 |
|
primrootscoprbij.4 |
|
5 |
|
primrootscoprbij.5 |
|
6 |
|
primrootscoprbij.6 |
|
7 |
|
primrootscoprbij.7 |
|
8 |
|
primrootscoprbij.8 |
|
9 |
4
|
nnzd |
|
10 |
3
|
nnzd |
|
11 |
5
|
nnzd |
|
12 |
11 6
|
jca |
|
13 |
9 10 12
|
jca31 |
|
14 |
7
|
eqcomd |
|
15 |
13 14
|
jca |
|
16 |
|
bezoutr1 |
|
17 |
16
|
imp |
|
18 |
15 17
|
syl |
|
19 |
1 2 3 4 18
|
primrootscoprf |
|
20 |
|
eqid |
|
21 |
11 10
|
jca |
|
22 |
9 6
|
jca |
|
23 |
21 22
|
jca |
|
24 |
5
|
nncnd |
|
25 |
4
|
nncnd |
|
26 |
24 25
|
mulcomd |
|
27 |
26
|
oveq1d |
|
28 |
27 14
|
eqtrd |
|
29 |
23 28
|
jca |
|
30 |
|
bezoutr1 |
|
31 |
30
|
imp |
|
32 |
29 31
|
syl |
|
33 |
20 2 3 5 32
|
primrootscoprf |
|
34 |
1
|
a1i |
|
35 |
|
simpr |
|
36 |
35
|
oveq2d |
|
37 |
|
simpr |
|
38 |
2
|
cmnmndd |
|
39 |
38
|
adantr |
|
40 |
4
|
nnnn0d |
|
41 |
40
|
adantr |
|
42 |
3
|
nnnn0d |
|
43 |
|
eqid |
|
44 |
2 42 43
|
isprimroot |
|
45 |
44
|
biimpd |
|
46 |
45
|
imp |
|
47 |
46
|
simp1d |
|
48 |
|
eqid |
|
49 |
48 43
|
mulgnn0cl |
|
50 |
39 41 47 49
|
syl3anc |
|
51 |
34 36 37 50
|
fvmptd |
|
52 |
51
|
fveq2d |
|
53 |
|
eqidd |
|
54 |
|
simpr |
|
55 |
54
|
oveq2d |
|
56 |
2
|
adantr |
|
57 |
3
|
adantr |
|
58 |
4
|
adantr |
|
59 |
18
|
adantr |
|
60 |
|
eqid |
|
61 |
56 57 58 59 37 60
|
primrootscoprmpow |
|
62 |
5
|
nnnn0d |
|
63 |
62
|
adantr |
|
64 |
48 43
|
mulgnn0cl |
|
65 |
39 63 50 64
|
syl3anc |
|
66 |
53 55 61 65
|
fvmptd |
|
67 |
63 41 47
|
3jca |
|
68 |
48 43
|
mulgnn0ass |
|
69 |
39 67 68
|
syl2anc |
|
70 |
2 3 8
|
primrootsunit |
|
71 |
70
|
simpld |
|
72 |
71
|
eleq2d |
|
73 |
72
|
biimpd |
|
74 |
70
|
simprd |
|
75 |
|
ablgrp |
|
76 |
74 75
|
syl |
|
77 |
|
grpmnd |
|
78 |
76 77
|
syl |
|
79 |
38 78
|
jca |
|
80 |
8
|
a1i |
|
81 |
80
|
eleq2d |
|
82 |
81
|
biimpd |
|
83 |
82
|
imp |
|
84 |
|
oveq2 |
|
85 |
84
|
eqeq1d |
|
86 |
85
|
rexbidv |
|
87 |
86
|
elrab |
|
88 |
87
|
biimpi |
|
89 |
88
|
simpld |
|
90 |
83 89
|
syl |
|
91 |
90
|
ex |
|
92 |
91
|
ssrdv |
|
93 |
|
oveq2 |
|
94 |
93
|
eqeq1d |
|
95 |
94
|
rexbidv |
|
96 |
|
eqid |
|
97 |
48 96
|
mndidcl |
|
98 |
38 97
|
syl |
|
99 |
|
simpr |
|
100 |
99
|
oveq1d |
|
101 |
100
|
eqeq1d |
|
102 |
|
eqid |
|
103 |
48 102 96
|
mndlid |
|
104 |
38 98 103
|
syl2anc |
|
105 |
98 101 104
|
rspcedvd |
|
106 |
95 98 105
|
elrabd |
|
107 |
80
|
eleq2d |
|
108 |
106 107
|
mpbird |
|
109 |
92 108
|
jca |
|
110 |
79 109
|
jca |
|
111 |
48 96
|
issubmndb |
|
112 |
110 111
|
sylibr |
|
113 |
112
|
adantr |
|
114 |
62
|
adantr |
|
115 |
40
|
adantr |
|
116 |
114 115
|
nn0mulcld |
|
117 |
74
|
ablcmnd |
|
118 |
|
eqid |
|
119 |
117 42 118
|
isprimroot |
|
120 |
119
|
biimpd |
|
121 |
120
|
imp |
|
122 |
121
|
simp1d |
|
123 |
|
eqid |
|
124 |
123 48
|
ressbas2 |
|
125 |
92 124
|
syl |
|
126 |
125
|
adantr |
|
127 |
126
|
eleq2d |
|
128 |
122 127
|
mpbird |
|
129 |
43 123 118
|
submmulg |
|
130 |
113 116 128 129
|
syl3anc |
|
131 |
26
|
adantr |
|
132 |
25 24
|
mulcld |
|
133 |
3
|
nncnd |
|
134 |
6
|
zcnd |
|
135 |
133 134
|
mulcld |
|
136 |
|
1cnd |
|
137 |
132 135 136
|
addlsub |
|
138 |
14 137
|
mpbid |
|
139 |
133 134
|
mulcomd |
|
140 |
139
|
oveq2d |
|
141 |
138 140
|
eqtrd |
|
142 |
139 135
|
eqeltrrd |
|
143 |
136 142
|
negsubd |
|
144 |
143
|
eqcomd |
|
145 |
141 144
|
eqtrd |
|
146 |
145
|
adantr |
|
147 |
131 146
|
eqtrd |
|
148 |
147
|
oveq1d |
|
149 |
76
|
adantr |
|
150 |
|
1zzd |
|
151 |
6
|
adantr |
|
152 |
10
|
adantr |
|
153 |
151 152
|
zmulcld |
|
154 |
153
|
znegcld |
|
155 |
150 154 122
|
3jca |
|
156 |
|
eqid |
|
157 |
|
eqid |
|
158 |
156 118 157
|
mulgdir |
|
159 |
149 155 158
|
syl2anc |
|
160 |
156 118
|
mulg1 |
|
161 |
122 160
|
syl |
|
162 |
|
eqid |
|
163 |
156 118 162
|
mulgneg |
|
164 |
149 153 122 163
|
syl3anc |
|
165 |
161 164
|
oveq12d |
|
166 |
151 152 122
|
3jca |
|
167 |
156 118
|
mulgass |
|
168 |
149 166 167
|
syl2anc |
|
169 |
121
|
simp2d |
|
170 |
169
|
oveq2d |
|
171 |
|
eqid |
|
172 |
156 118 171
|
mulgz |
|
173 |
149 151 172
|
syl2anc |
|
174 |
170 173
|
eqtrd |
|
175 |
168 174
|
eqtrd |
|
176 |
175
|
fveq2d |
|
177 |
171 162
|
grpinvid |
|
178 |
76 177
|
syl |
|
179 |
178
|
adantr |
|
180 |
176 179
|
eqtrd |
|
181 |
180
|
oveq2d |
|
182 |
149 77
|
syl |
|
183 |
156 157 171
|
mndrid |
|
184 |
182 122 183
|
syl2anc |
|
185 |
181 184
|
eqtrd |
|
186 |
165 185
|
eqtrd |
|
187 |
159 186
|
eqtrd |
|
188 |
148 187
|
eqtrd |
|
189 |
130 188
|
eqtrd |
|
190 |
189
|
ex |
|
191 |
190
|
imim2d |
|
192 |
73 191
|
mpd |
|
193 |
192
|
imp |
|
194 |
69 193
|
eqtr3d |
|
195 |
66 194
|
eqtrd |
|
196 |
52 195
|
eqtrd |
|
197 |
196
|
ralrimiva |
|
198 |
|
eqidd |
|
199 |
|
simpr |
|
200 |
199
|
oveq2d |
|
201 |
|
simpr |
|
202 |
38
|
adantr |
|
203 |
62
|
adantr |
|
204 |
2 42 43
|
isprimroot |
|
205 |
204
|
biimpd |
|
206 |
205
|
imp |
|
207 |
206
|
simp1d |
|
208 |
48 43
|
mulgnn0cl |
|
209 |
202 203 207 208
|
syl3anc |
|
210 |
198 200 201 209
|
fvmptd |
|
211 |
210
|
fveq2d |
|
212 |
1
|
a1i |
|
213 |
|
simpr |
|
214 |
213
|
oveq2d |
|
215 |
2
|
adantr |
|
216 |
3
|
adantr |
|
217 |
5
|
adantr |
|
218 |
32
|
adantr |
|
219 |
215 216 217 218 201 60
|
primrootscoprmpow |
|
220 |
40
|
adantr |
|
221 |
48 43
|
mulgnn0cl |
|
222 |
202 220 209 221
|
syl3anc |
|
223 |
212 214 219 222
|
fvmptd |
|
224 |
220 203 207
|
3jca |
|
225 |
48 43
|
mulgnn0ass |
|
226 |
202 224 225
|
syl2anc |
|
227 |
112
|
adantr |
|
228 |
220 203
|
nn0mulcld |
|
229 |
128
|
ex |
|
230 |
229
|
ssrdv |
|
231 |
71
|
sseq1d |
|
232 |
230 231
|
mpbird |
|
233 |
232
|
sseld |
|
234 |
233
|
imp |
|
235 |
43 123 118
|
submmulg |
|
236 |
227 228 234 235
|
syl3anc |
|
237 |
145
|
adantr |
|
238 |
237
|
oveq1d |
|
239 |
76
|
adantr |
|
240 |
|
1zzd |
|
241 |
6
|
adantr |
|
242 |
10
|
adantr |
|
243 |
241 242
|
zmulcld |
|
244 |
243
|
znegcld |
|
245 |
232 125
|
sseqtrd |
|
246 |
245
|
sseld |
|
247 |
246
|
imp |
|
248 |
240 244 247
|
3jca |
|
249 |
156 118 157
|
mulgdir |
|
250 |
239 248 249
|
syl2anc |
|
251 |
156 118
|
mulg1 |
|
252 |
247 251
|
syl |
|
253 |
156 118 162
|
mulgneg |
|
254 |
239 243 247 253
|
syl3anc |
|
255 |
241 242 247
|
3jca |
|
256 |
156 118
|
mulgass |
|
257 |
239 255 256
|
syl2anc |
|
258 |
117 42 118
|
isprimroot |
|
259 |
258
|
biimpd |
|
260 |
259
|
imp |
|
261 |
260
|
simp2d |
|
262 |
261
|
ex |
|
263 |
71
|
eleq2d |
|
264 |
263
|
imbi1d |
|
265 |
262 264
|
mpbird |
|
266 |
265
|
imp |
|
267 |
266
|
oveq2d |
|
268 |
239 241 172
|
syl2anc |
|
269 |
267 268
|
eqtrd |
|
270 |
257 269
|
eqtrd |
|
271 |
270
|
fveq2d |
|
272 |
239 177
|
syl |
|
273 |
271 272
|
eqtrd |
|
274 |
254 273
|
eqtrd |
|
275 |
252 274
|
oveq12d |
|
276 |
156 157 171 239 247
|
grpridd |
|
277 |
275 276
|
eqtrd |
|
278 |
250 277
|
eqtrd |
|
279 |
238 278
|
eqtrd |
|
280 |
236 279
|
eqtrd |
|
281 |
226 280
|
eqtr3d |
|
282 |
223 281
|
eqtrd |
|
283 |
211 282
|
eqtrd |
|
284 |
283
|
ralrimiva |
|
285 |
19 33 197 284
|
2fvidf1od |
|