Metamath Proof Explorer


Theorem primrootscoprbij

Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses primrootscoprbij.1 F = m R PrimRoots K I R m
primrootscoprbij.2 φ R CMnd
primrootscoprbij.3 φ K
primrootscoprbij.4 φ I
primrootscoprbij.5 φ J
primrootscoprbij.6 φ Z
primrootscoprbij.7 φ 1 = I J + K Z
primrootscoprbij.8 U = a Base R | i Base R i + R a = 0 R
Assertion primrootscoprbij φ F : R PrimRoots K 1-1 onto R PrimRoots K

Proof

Step Hyp Ref Expression
1 primrootscoprbij.1 F = m R PrimRoots K I R m
2 primrootscoprbij.2 φ R CMnd
3 primrootscoprbij.3 φ K
4 primrootscoprbij.4 φ I
5 primrootscoprbij.5 φ J
6 primrootscoprbij.6 φ Z
7 primrootscoprbij.7 φ 1 = I J + K Z
8 primrootscoprbij.8 U = a Base R | i Base R i + R a = 0 R
9 4 nnzd φ I
10 3 nnzd φ K
11 5 nnzd φ J
12 11 6 jca φ J Z
13 9 10 12 jca31 φ I K J Z
14 7 eqcomd φ I J + K Z = 1
15 13 14 jca φ I K J Z I J + K Z = 1
16 bezoutr1 I K J Z I J + K Z = 1 I gcd K = 1
17 16 imp I K J Z I J + K Z = 1 I gcd K = 1
18 15 17 syl φ I gcd K = 1
19 1 2 3 4 18 primrootscoprf φ F : R PrimRoots K R PrimRoots K
20 eqid n R PrimRoots K J R n = n R PrimRoots K J R n
21 11 10 jca φ J K
22 9 6 jca φ I Z
23 21 22 jca φ J K I Z
24 5 nncnd φ J
25 4 nncnd φ I
26 24 25 mulcomd φ J I = I J
27 26 oveq1d φ J I + K Z = I J + K Z
28 27 14 eqtrd φ J I + K Z = 1
29 23 28 jca φ J K I Z J I + K Z = 1
30 bezoutr1 J K I Z J I + K Z = 1 J gcd K = 1
31 30 imp J K I Z J I + K Z = 1 J gcd K = 1
32 29 31 syl φ J gcd K = 1
33 20 2 3 5 32 primrootscoprf φ n R PrimRoots K J R n : R PrimRoots K R PrimRoots K
34 1 a1i φ x R PrimRoots K F = m R PrimRoots K I R m
35 simpr φ x R PrimRoots K m = x m = x
36 35 oveq2d φ x R PrimRoots K m = x I R m = I R x
37 simpr φ x R PrimRoots K x R PrimRoots K
38 2 cmnmndd φ R Mnd
39 38 adantr φ x R PrimRoots K R Mnd
40 4 nnnn0d φ I 0
41 40 adantr φ x R PrimRoots K I 0
42 3 nnnn0d φ K 0
43 eqid R = R
44 2 42 43 isprimroot φ x R PrimRoots K x Base R K R x = 0 R l 0 l R x = 0 R K l
45 44 biimpd φ x R PrimRoots K x Base R K R x = 0 R l 0 l R x = 0 R K l
46 45 imp φ x R PrimRoots K x Base R K R x = 0 R l 0 l R x = 0 R K l
47 46 simp1d φ x R PrimRoots K x Base R
48 eqid Base R = Base R
49 48 43 mulgnn0cl R Mnd I 0 x Base R I R x Base R
50 39 41 47 49 syl3anc φ x R PrimRoots K I R x Base R
51 34 36 37 50 fvmptd φ x R PrimRoots K F x = I R x
52 51 fveq2d φ x R PrimRoots K n R PrimRoots K J R n F x = n R PrimRoots K J R n I R x
53 eqidd φ x R PrimRoots K n R PrimRoots K J R n = n R PrimRoots K J R n
54 simpr φ x R PrimRoots K n = I R x n = I R x
55 54 oveq2d φ x R PrimRoots K n = I R x J R n = J R I R x
56 2 adantr φ x R PrimRoots K R CMnd
57 3 adantr φ x R PrimRoots K K
58 4 adantr φ x R PrimRoots K I
59 18 adantr φ x R PrimRoots K I gcd K = 1
60 eqid s Base R | t Base R t + R s = 0 R = s Base R | t Base R t + R s = 0 R
61 56 57 58 59 37 60 primrootscoprmpow φ x R PrimRoots K I R x R PrimRoots K
62 5 nnnn0d φ J 0
63 62 adantr φ x R PrimRoots K J 0
64 48 43 mulgnn0cl R Mnd J 0 I R x Base R J R I R x Base R
65 39 63 50 64 syl3anc φ x R PrimRoots K J R I R x Base R
66 53 55 61 65 fvmptd φ x R PrimRoots K n R PrimRoots K J R n I R x = J R I R x
67 63 41 47 3jca φ x R PrimRoots K J 0 I 0 x Base R
68 48 43 mulgnn0ass R Mnd J 0 I 0 x Base R J I R x = J R I R x
69 39 67 68 syl2anc φ x R PrimRoots K J I R x = J R I R x
70 2 3 8 primrootsunit φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel
71 70 simpld φ R PrimRoots K = R 𝑠 U PrimRoots K
72 71 eleq2d φ x R PrimRoots K x R 𝑠 U PrimRoots K
73 72 biimpd φ x R PrimRoots K x R 𝑠 U PrimRoots K
74 70 simprd φ R 𝑠 U Abel
75 ablgrp R 𝑠 U Abel R 𝑠 U Grp
76 74 75 syl φ R 𝑠 U Grp
77 grpmnd R 𝑠 U Grp R 𝑠 U Mnd
78 76 77 syl φ R 𝑠 U Mnd
79 38 78 jca φ R Mnd R 𝑠 U Mnd
80 8 a1i φ U = a Base R | i Base R i + R a = 0 R
81 80 eleq2d φ f U f a Base R | i Base R i + R a = 0 R
82 81 biimpd φ f U f a Base R | i Base R i + R a = 0 R
83 82 imp φ f U f a Base R | i Base R i + R a = 0 R
84 oveq2 a = f i + R a = i + R f
85 84 eqeq1d a = f i + R a = 0 R i + R f = 0 R
86 85 rexbidv a = f i Base R i + R a = 0 R i Base R i + R f = 0 R
87 86 elrab f a Base R | i Base R i + R a = 0 R f Base R i Base R i + R f = 0 R
88 87 biimpi f a Base R | i Base R i + R a = 0 R f Base R i Base R i + R f = 0 R
89 88 simpld f a Base R | i Base R i + R a = 0 R f Base R
90 83 89 syl φ f U f Base R
91 90 ex φ f U f Base R
92 91 ssrdv φ U Base R
93 oveq2 a = 0 R i + R a = i + R 0 R
94 93 eqeq1d a = 0 R i + R a = 0 R i + R 0 R = 0 R
95 94 rexbidv a = 0 R i Base R i + R a = 0 R i Base R i + R 0 R = 0 R
96 eqid 0 R = 0 R
97 48 96 mndidcl R Mnd 0 R Base R
98 38 97 syl φ 0 R Base R
99 simpr φ i = 0 R i = 0 R
100 99 oveq1d φ i = 0 R i + R 0 R = 0 R + R 0 R
101 100 eqeq1d φ i = 0 R i + R 0 R = 0 R 0 R + R 0 R = 0 R
102 eqid + R = + R
103 48 102 96 mndlid R Mnd 0 R Base R 0 R + R 0 R = 0 R
104 38 98 103 syl2anc φ 0 R + R 0 R = 0 R
105 98 101 104 rspcedvd φ i Base R i + R 0 R = 0 R
106 95 98 105 elrabd φ 0 R a Base R | i Base R i + R a = 0 R
107 80 eleq2d φ 0 R U 0 R a Base R | i Base R i + R a = 0 R
108 106 107 mpbird φ 0 R U
109 92 108 jca φ U Base R 0 R U
110 79 109 jca φ R Mnd R 𝑠 U Mnd U Base R 0 R U
111 48 96 issubmndb U SubMnd R R Mnd R 𝑠 U Mnd U Base R 0 R U
112 110 111 sylibr φ U SubMnd R
113 112 adantr φ x R 𝑠 U PrimRoots K U SubMnd R
114 62 adantr φ x R 𝑠 U PrimRoots K J 0
115 40 adantr φ x R 𝑠 U PrimRoots K I 0
116 114 115 nn0mulcld φ x R 𝑠 U PrimRoots K J I 0
117 74 ablcmnd φ R 𝑠 U CMnd
118 eqid R 𝑠 U = R 𝑠 U
119 117 42 118 isprimroot φ x R 𝑠 U PrimRoots K x Base R 𝑠 U K R 𝑠 U x = 0 R 𝑠 U l 0 l R 𝑠 U x = 0 R 𝑠 U K l
120 119 biimpd φ x R 𝑠 U PrimRoots K x Base R 𝑠 U K R 𝑠 U x = 0 R 𝑠 U l 0 l R 𝑠 U x = 0 R 𝑠 U K l
121 120 imp φ x R 𝑠 U PrimRoots K x Base R 𝑠 U K R 𝑠 U x = 0 R 𝑠 U l 0 l R 𝑠 U x = 0 R 𝑠 U K l
122 121 simp1d φ x R 𝑠 U PrimRoots K x Base R 𝑠 U
123 eqid R 𝑠 U = R 𝑠 U
124 123 48 ressbas2 U Base R U = Base R 𝑠 U
125 92 124 syl φ U = Base R 𝑠 U
126 125 adantr φ x R 𝑠 U PrimRoots K U = Base R 𝑠 U
127 126 eleq2d φ x R 𝑠 U PrimRoots K x U x Base R 𝑠 U
128 122 127 mpbird φ x R 𝑠 U PrimRoots K x U
129 43 123 118 submmulg U SubMnd R J I 0 x U J I R x = J I R 𝑠 U x
130 113 116 128 129 syl3anc φ x R 𝑠 U PrimRoots K J I R x = J I R 𝑠 U x
131 26 adantr φ x R 𝑠 U PrimRoots K J I = I J
132 25 24 mulcld φ I J
133 3 nncnd φ K
134 6 zcnd φ Z
135 133 134 mulcld φ K Z
136 1cnd φ 1
137 132 135 136 addlsub φ I J + K Z = 1 I J = 1 K Z
138 14 137 mpbid φ I J = 1 K Z
139 133 134 mulcomd φ K Z = Z K
140 139 oveq2d φ 1 K Z = 1 Z K
141 138 140 eqtrd φ I J = 1 Z K
142 139 135 eqeltrrd φ Z K
143 136 142 negsubd φ 1 + Z K = 1 Z K
144 143 eqcomd φ 1 Z K = 1 + Z K
145 141 144 eqtrd φ I J = 1 + Z K
146 145 adantr φ x R 𝑠 U PrimRoots K I J = 1 + Z K
147 131 146 eqtrd φ x R 𝑠 U PrimRoots K J I = 1 + Z K
148 147 oveq1d φ x R 𝑠 U PrimRoots K J I R 𝑠 U x = 1 + Z K R 𝑠 U x
149 76 adantr φ x R 𝑠 U PrimRoots K R 𝑠 U Grp
150 1zzd φ x R 𝑠 U PrimRoots K 1
151 6 adantr φ x R 𝑠 U PrimRoots K Z
152 10 adantr φ x R 𝑠 U PrimRoots K K
153 151 152 zmulcld φ x R 𝑠 U PrimRoots K Z K
154 153 znegcld φ x R 𝑠 U PrimRoots K Z K
155 150 154 122 3jca φ x R 𝑠 U PrimRoots K 1 Z K x Base R 𝑠 U
156 eqid Base R 𝑠 U = Base R 𝑠 U
157 eqid + R 𝑠 U = + R 𝑠 U
158 156 118 157 mulgdir R 𝑠 U Grp 1 Z K x Base R 𝑠 U 1 + Z K R 𝑠 U x = 1 R 𝑠 U x + R 𝑠 U Z K R 𝑠 U x
159 149 155 158 syl2anc φ x R 𝑠 U PrimRoots K 1 + Z K R 𝑠 U x = 1 R 𝑠 U x + R 𝑠 U Z K R 𝑠 U x
160 156 118 mulg1 x Base R 𝑠 U 1 R 𝑠 U x = x
161 122 160 syl φ x R 𝑠 U PrimRoots K 1 R 𝑠 U x = x
162 eqid inv g R 𝑠 U = inv g R 𝑠 U
163 156 118 162 mulgneg R 𝑠 U Grp Z K x Base R 𝑠 U Z K R 𝑠 U x = inv g R 𝑠 U Z K R 𝑠 U x
164 149 153 122 163 syl3anc φ x R 𝑠 U PrimRoots K Z K R 𝑠 U x = inv g R 𝑠 U Z K R 𝑠 U x
165 161 164 oveq12d φ x R 𝑠 U PrimRoots K 1 R 𝑠 U x + R 𝑠 U Z K R 𝑠 U x = x + R 𝑠 U inv g R 𝑠 U Z K R 𝑠 U x
166 151 152 122 3jca φ x R 𝑠 U PrimRoots K Z K x Base R 𝑠 U
167 156 118 mulgass R 𝑠 U Grp Z K x Base R 𝑠 U Z K R 𝑠 U x = Z R 𝑠 U K R 𝑠 U x
168 149 166 167 syl2anc φ x R 𝑠 U PrimRoots K Z K R 𝑠 U x = Z R 𝑠 U K R 𝑠 U x
169 121 simp2d φ x R 𝑠 U PrimRoots K K R 𝑠 U x = 0 R 𝑠 U
170 169 oveq2d φ x R 𝑠 U PrimRoots K Z R 𝑠 U K R 𝑠 U x = Z R 𝑠 U 0 R 𝑠 U
171 eqid 0 R 𝑠 U = 0 R 𝑠 U
172 156 118 171 mulgz R 𝑠 U Grp Z Z R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
173 149 151 172 syl2anc φ x R 𝑠 U PrimRoots K Z R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
174 170 173 eqtrd φ x R 𝑠 U PrimRoots K Z R 𝑠 U K R 𝑠 U x = 0 R 𝑠 U
175 168 174 eqtrd φ x R 𝑠 U PrimRoots K Z K R 𝑠 U x = 0 R 𝑠 U
176 175 fveq2d φ x R 𝑠 U PrimRoots K inv g R 𝑠 U Z K R 𝑠 U x = inv g R 𝑠 U 0 R 𝑠 U
177 171 162 grpinvid R 𝑠 U Grp inv g R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
178 76 177 syl φ inv g R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
179 178 adantr φ x R 𝑠 U PrimRoots K inv g R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
180 176 179 eqtrd φ x R 𝑠 U PrimRoots K inv g R 𝑠 U Z K R 𝑠 U x = 0 R 𝑠 U
181 180 oveq2d φ x R 𝑠 U PrimRoots K x + R 𝑠 U inv g R 𝑠 U Z K R 𝑠 U x = x + R 𝑠 U 0 R 𝑠 U
182 149 77 syl φ x R 𝑠 U PrimRoots K R 𝑠 U Mnd
183 156 157 171 mndrid R 𝑠 U Mnd x Base R 𝑠 U x + R 𝑠 U 0 R 𝑠 U = x
184 182 122 183 syl2anc φ x R 𝑠 U PrimRoots K x + R 𝑠 U 0 R 𝑠 U = x
185 181 184 eqtrd φ x R 𝑠 U PrimRoots K x + R 𝑠 U inv g R 𝑠 U Z K R 𝑠 U x = x
186 165 185 eqtrd φ x R 𝑠 U PrimRoots K 1 R 𝑠 U x + R 𝑠 U Z K R 𝑠 U x = x
187 159 186 eqtrd φ x R 𝑠 U PrimRoots K 1 + Z K R 𝑠 U x = x
188 148 187 eqtrd φ x R 𝑠 U PrimRoots K J I R 𝑠 U x = x
189 130 188 eqtrd φ x R 𝑠 U PrimRoots K J I R x = x
190 189 ex φ x R 𝑠 U PrimRoots K J I R x = x
191 190 imim2d φ x R PrimRoots K x R 𝑠 U PrimRoots K x R PrimRoots K J I R x = x
192 73 191 mpd φ x R PrimRoots K J I R x = x
193 192 imp φ x R PrimRoots K J I R x = x
194 69 193 eqtr3d φ x R PrimRoots K J R I R x = x
195 66 194 eqtrd φ x R PrimRoots K n R PrimRoots K J R n I R x = x
196 52 195 eqtrd φ x R PrimRoots K n R PrimRoots K J R n F x = x
197 196 ralrimiva φ x R PrimRoots K n R PrimRoots K J R n F x = x
198 eqidd φ y R PrimRoots K n R PrimRoots K J R n = n R PrimRoots K J R n
199 simpr φ y R PrimRoots K n = y n = y
200 199 oveq2d φ y R PrimRoots K n = y J R n = J R y
201 simpr φ y R PrimRoots K y R PrimRoots K
202 38 adantr φ y R PrimRoots K R Mnd
203 62 adantr φ y R PrimRoots K J 0
204 2 42 43 isprimroot φ y R PrimRoots K y Base R K R y = 0 R l 0 l R y = 0 R K l
205 204 biimpd φ y R PrimRoots K y Base R K R y = 0 R l 0 l R y = 0 R K l
206 205 imp φ y R PrimRoots K y Base R K R y = 0 R l 0 l R y = 0 R K l
207 206 simp1d φ y R PrimRoots K y Base R
208 48 43 mulgnn0cl R Mnd J 0 y Base R J R y Base R
209 202 203 207 208 syl3anc φ y R PrimRoots K J R y Base R
210 198 200 201 209 fvmptd φ y R PrimRoots K n R PrimRoots K J R n y = J R y
211 210 fveq2d φ y R PrimRoots K F n R PrimRoots K J R n y = F J R y
212 1 a1i φ y R PrimRoots K F = m R PrimRoots K I R m
213 simpr φ y R PrimRoots K m = J R y m = J R y
214 213 oveq2d φ y R PrimRoots K m = J R y I R m = I R J R y
215 2 adantr φ y R PrimRoots K R CMnd
216 3 adantr φ y R PrimRoots K K
217 5 adantr φ y R PrimRoots K J
218 32 adantr φ y R PrimRoots K J gcd K = 1
219 215 216 217 218 201 60 primrootscoprmpow φ y R PrimRoots K J R y R PrimRoots K
220 40 adantr φ y R PrimRoots K I 0
221 48 43 mulgnn0cl R Mnd I 0 J R y Base R I R J R y Base R
222 202 220 209 221 syl3anc φ y R PrimRoots K I R J R y Base R
223 212 214 219 222 fvmptd φ y R PrimRoots K F J R y = I R J R y
224 220 203 207 3jca φ y R PrimRoots K I 0 J 0 y Base R
225 48 43 mulgnn0ass R Mnd I 0 J 0 y Base R I J R y = I R J R y
226 202 224 225 syl2anc φ y R PrimRoots K I J R y = I R J R y
227 112 adantr φ y R PrimRoots K U SubMnd R
228 220 203 nn0mulcld φ y R PrimRoots K I J 0
229 128 ex φ x R 𝑠 U PrimRoots K x U
230 229 ssrdv φ R 𝑠 U PrimRoots K U
231 71 sseq1d φ R PrimRoots K U R 𝑠 U PrimRoots K U
232 230 231 mpbird φ R PrimRoots K U
233 232 sseld φ y R PrimRoots K y U
234 233 imp φ y R PrimRoots K y U
235 43 123 118 submmulg U SubMnd R I J 0 y U I J R y = I J R 𝑠 U y
236 227 228 234 235 syl3anc φ y R PrimRoots K I J R y = I J R 𝑠 U y
237 145 adantr φ y R PrimRoots K I J = 1 + Z K
238 237 oveq1d φ y R PrimRoots K I J R 𝑠 U y = 1 + Z K R 𝑠 U y
239 76 adantr φ y R PrimRoots K R 𝑠 U Grp
240 1zzd φ y R PrimRoots K 1
241 6 adantr φ y R PrimRoots K Z
242 10 adantr φ y R PrimRoots K K
243 241 242 zmulcld φ y R PrimRoots K Z K
244 243 znegcld φ y R PrimRoots K Z K
245 232 125 sseqtrd φ R PrimRoots K Base R 𝑠 U
246 245 sseld φ y R PrimRoots K y Base R 𝑠 U
247 246 imp φ y R PrimRoots K y Base R 𝑠 U
248 240 244 247 3jca φ y R PrimRoots K 1 Z K y Base R 𝑠 U
249 156 118 157 mulgdir R 𝑠 U Grp 1 Z K y Base R 𝑠 U 1 + Z K R 𝑠 U y = 1 R 𝑠 U y + R 𝑠 U Z K R 𝑠 U y
250 239 248 249 syl2anc φ y R PrimRoots K 1 + Z K R 𝑠 U y = 1 R 𝑠 U y + R 𝑠 U Z K R 𝑠 U y
251 156 118 mulg1 y Base R 𝑠 U 1 R 𝑠 U y = y
252 247 251 syl φ y R PrimRoots K 1 R 𝑠 U y = y
253 156 118 162 mulgneg R 𝑠 U Grp Z K y Base R 𝑠 U Z K R 𝑠 U y = inv g R 𝑠 U Z K R 𝑠 U y
254 239 243 247 253 syl3anc φ y R PrimRoots K Z K R 𝑠 U y = inv g R 𝑠 U Z K R 𝑠 U y
255 241 242 247 3jca φ y R PrimRoots K Z K y Base R 𝑠 U
256 156 118 mulgass R 𝑠 U Grp Z K y Base R 𝑠 U Z K R 𝑠 U y = Z R 𝑠 U K R 𝑠 U y
257 239 255 256 syl2anc φ y R PrimRoots K Z K R 𝑠 U y = Z R 𝑠 U K R 𝑠 U y
258 117 42 118 isprimroot φ y R 𝑠 U PrimRoots K y Base R 𝑠 U K R 𝑠 U y = 0 R 𝑠 U l 0 l R 𝑠 U y = 0 R 𝑠 U K l
259 258 biimpd φ y R 𝑠 U PrimRoots K y Base R 𝑠 U K R 𝑠 U y = 0 R 𝑠 U l 0 l R 𝑠 U y = 0 R 𝑠 U K l
260 259 imp φ y R 𝑠 U PrimRoots K y Base R 𝑠 U K R 𝑠 U y = 0 R 𝑠 U l 0 l R 𝑠 U y = 0 R 𝑠 U K l
261 260 simp2d φ y R 𝑠 U PrimRoots K K R 𝑠 U y = 0 R 𝑠 U
262 261 ex φ y R 𝑠 U PrimRoots K K R 𝑠 U y = 0 R 𝑠 U
263 71 eleq2d φ y R PrimRoots K y R 𝑠 U PrimRoots K
264 263 imbi1d φ y R PrimRoots K K R 𝑠 U y = 0 R 𝑠 U y R 𝑠 U PrimRoots K K R 𝑠 U y = 0 R 𝑠 U
265 262 264 mpbird φ y R PrimRoots K K R 𝑠 U y = 0 R 𝑠 U
266 265 imp φ y R PrimRoots K K R 𝑠 U y = 0 R 𝑠 U
267 266 oveq2d φ y R PrimRoots K Z R 𝑠 U K R 𝑠 U y = Z R 𝑠 U 0 R 𝑠 U
268 239 241 172 syl2anc φ y R PrimRoots K Z R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
269 267 268 eqtrd φ y R PrimRoots K Z R 𝑠 U K R 𝑠 U y = 0 R 𝑠 U
270 257 269 eqtrd φ y R PrimRoots K Z K R 𝑠 U y = 0 R 𝑠 U
271 270 fveq2d φ y R PrimRoots K inv g R 𝑠 U Z K R 𝑠 U y = inv g R 𝑠 U 0 R 𝑠 U
272 239 177 syl φ y R PrimRoots K inv g R 𝑠 U 0 R 𝑠 U = 0 R 𝑠 U
273 271 272 eqtrd φ y R PrimRoots K inv g R 𝑠 U Z K R 𝑠 U y = 0 R 𝑠 U
274 254 273 eqtrd φ y R PrimRoots K Z K R 𝑠 U y = 0 R 𝑠 U
275 252 274 oveq12d φ y R PrimRoots K 1 R 𝑠 U y + R 𝑠 U Z K R 𝑠 U y = y + R 𝑠 U 0 R 𝑠 U
276 156 157 171 239 247 grpridd φ y R PrimRoots K y + R 𝑠 U 0 R 𝑠 U = y
277 275 276 eqtrd φ y R PrimRoots K 1 R 𝑠 U y + R 𝑠 U Z K R 𝑠 U y = y
278 250 277 eqtrd φ y R PrimRoots K 1 + Z K R 𝑠 U y = y
279 238 278 eqtrd φ y R PrimRoots K I J R 𝑠 U y = y
280 236 279 eqtrd φ y R PrimRoots K I J R y = y
281 226 280 eqtr3d φ y R PrimRoots K I R J R y = y
282 223 281 eqtrd φ y R PrimRoots K F J R y = y
283 211 282 eqtrd φ y R PrimRoots K F n R PrimRoots K J R n y = y
284 283 ralrimiva φ y R PrimRoots K F n R PrimRoots K J R n y = y
285 19 33 197 284 2fvidf1od φ F : R PrimRoots K 1-1 onto R PrimRoots K