Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprbij2.1 |
⊢ 𝐹 = ( 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ↦ ( 𝐼 ( .g ‘ 𝑅 ) 𝑚 ) ) |
2 |
|
primrootscoprbij2.2 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
3 |
|
primrootscoprbij2.3 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
4 |
|
primrootscoprbij2.4 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
5 |
|
primrootscoprbij2.5 |
⊢ ( 𝜑 → ( 𝐼 gcd 𝐾 ) = 1 ) |
6 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝑅 ∈ CMnd ) |
7 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝐾 ∈ ℕ ) |
8 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝐼 ∈ ℕ ) |
9 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝑥 ∈ ℕ ) |
10 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝑦 ∈ ℤ ) |
11 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → ( 𝐼 gcd 𝐾 ) = 1 ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) |
13 |
11 12
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 1 = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) |
14 |
|
eqid |
⊢ { 𝑤 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑤 ) = ( 0g ‘ 𝑅 ) } = { 𝑤 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑤 ) = ( 0g ‘ 𝑅 ) } |
15 |
1 6 7 8 9 10 13 14
|
primrootscoprbij |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝐹 : ( 𝑅 PrimRoots 𝐾 ) –1-1-onto→ ( 𝑅 PrimRoots 𝐾 ) ) |
16 |
4 3
|
jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ) |
17 |
|
posbezout |
⊢ ( ( 𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℤ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℤ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) |
19 |
15 18
|
r19.29vva |
⊢ ( 𝜑 → 𝐹 : ( 𝑅 PrimRoots 𝐾 ) –1-1-onto→ ( 𝑅 PrimRoots 𝐾 ) ) |