Metamath Proof Explorer


Theorem primrootscoprbij2

Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses primrootscoprbij2.1 𝐹 = ( 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ↦ ( 𝐼 ( .g𝑅 ) 𝑚 ) )
primrootscoprbij2.2 ( 𝜑𝑅 ∈ CMnd )
primrootscoprbij2.3 ( 𝜑𝐾 ∈ ℕ )
primrootscoprbij2.4 ( 𝜑𝐼 ∈ ℕ )
primrootscoprbij2.5 ( 𝜑 → ( 𝐼 gcd 𝐾 ) = 1 )
Assertion primrootscoprbij2 ( 𝜑𝐹 : ( 𝑅 PrimRoots 𝐾 ) –1-1-onto→ ( 𝑅 PrimRoots 𝐾 ) )

Proof

Step Hyp Ref Expression
1 primrootscoprbij2.1 𝐹 = ( 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ↦ ( 𝐼 ( .g𝑅 ) 𝑚 ) )
2 primrootscoprbij2.2 ( 𝜑𝑅 ∈ CMnd )
3 primrootscoprbij2.3 ( 𝜑𝐾 ∈ ℕ )
4 primrootscoprbij2.4 ( 𝜑𝐼 ∈ ℕ )
5 primrootscoprbij2.5 ( 𝜑 → ( 𝐼 gcd 𝐾 ) = 1 )
6 2 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝑅 ∈ CMnd )
7 3 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝐾 ∈ ℕ )
8 4 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝐼 ∈ ℕ )
9 simpllr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝑥 ∈ ℕ )
10 simplr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝑦 ∈ ℤ )
11 5 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → ( 𝐼 gcd 𝐾 ) = 1 )
12 simpr ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) )
13 11 12 eqtr3d ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 1 = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) )
14 eqid { 𝑤 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( +g𝑅 ) 𝑤 ) = ( 0g𝑅 ) } = { 𝑤 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( +g𝑅 ) 𝑤 ) = ( 0g𝑅 ) }
15 1 6 7 8 9 10 13 14 primrootscoprbij ( ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) ) → 𝐹 : ( 𝑅 PrimRoots 𝐾 ) –1-1-onto→ ( 𝑅 PrimRoots 𝐾 ) )
16 4 3 jca ( 𝜑 → ( 𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ ) )
17 posbezout ( ( 𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℤ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) )
18 16 17 syl ( 𝜑 → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℤ ( 𝐼 gcd 𝐾 ) = ( ( 𝐼 · 𝑥 ) + ( 𝐾 · 𝑦 ) ) )
19 15 18 r19.29vva ( 𝜑𝐹 : ( 𝑅 PrimRoots 𝐾 ) –1-1-onto→ ( 𝑅 PrimRoots 𝐾 ) )