Metamath Proof Explorer


Theorem remexz

Description: Division with rest. (Contributed by metakunt, 15-May-2025)

Ref Expression
Hypotheses remexz.1 φ N
remexz.2 φ A
Assertion remexz φ x y 0 A 1 N = x A + y

Proof

Step Hyp Ref Expression
1 remexz.1 φ N
2 remexz.2 φ A
3 zmodfzo N A N mod A 0 ..^ A
4 1 2 3 syl2anc φ N mod A 0 ..^ A
5 2 nnzd φ A
6 fzoval A 0 ..^ A = 0 A 1
7 5 6 syl φ 0 ..^ A = 0 A 1
8 4 7 eleqtrd φ N mod A 0 A 1
9 simpr φ y = N mod A y = N mod A
10 9 oveq2d φ y = N mod A x A + y = x A + N mod A
11 10 eqeq2d φ y = N mod A N = x A + y N = x A + N mod A
12 11 rexbidv φ y = N mod A x N = x A + y x N = x A + N mod A
13 eqidd φ N mod A = N mod A
14 2 nnrpd φ A +
15 modmuladdim N A + N mod A = N mod A x N = x A + N mod A
16 1 14 15 syl2anc φ N mod A = N mod A x N = x A + N mod A
17 13 16 mpd φ x N = x A + N mod A
18 8 12 17 rspcedvd φ y 0 A 1 x N = x A + y
19 rexcom x y 0 A 1 N = x A + y y 0 A 1 x N = x A + y
20 18 19 sylibr φ x y 0 A 1 N = x A + y