Metamath Proof Explorer


Theorem modmuladdim

Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion modmuladdim AM+AmodM=BkA=k M+B

Proof

Step Hyp Ref Expression
1 zre AA
2 modelico AM+AmodM0M
3 1 2 sylan AM+AmodM0M
4 3 adantr AM+AmodM=BAmodM0M
5 eleq1 AmodM=BAmodM0MB0M
6 5 adantl AM+AmodM=BAmodM0MB0M
7 4 6 mpbid AM+AmodM=BB0M
8 simpll AM+B0MA
9 simpr AM+B0MB0M
10 simpr AM+M+
11 10 adantr AM+B0MM+
12 modmuladd AB0MM+AmodM=BkA=k M+B
13 8 9 11 12 syl3anc AM+B0MAmodM=BkA=k M+B
14 13 biimpd AM+B0MAmodM=BkA=k M+B
15 14 impancom AM+AmodM=BB0MkA=k M+B
16 7 15 mpd AM+AmodM=BkA=k M+B
17 16 ex AM+AmodM=BkA=k M+B