Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | modmuladdnn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 1 | adantr | |
3 | eqcom | |
|
4 | nn0cn | |
|
5 | 4 | adantr | |
6 | 5 | ad2antrr | |
7 | nn0re | |
|
8 | modcl | |
|
9 | 7 8 | sylan | |
10 | 9 | recnd | |
11 | 10 | adantr | |
12 | eleq1 | |
|
13 | 12 | adantl | |
14 | 11 13 | mpbid | |
15 | 14 | adantr | |
16 | zcn | |
|
17 | 16 | adantl | |
18 | rpcn | |
|
19 | 18 | adantl | |
20 | 19 | ad2antrr | |
21 | 17 20 | mulcld | |
22 | 6 15 21 | subadd2d | |
23 | 3 22 | bitr4id | |
24 | 4 | ad2antrr | |
25 | 24 14 | subcld | |
26 | 25 | adantr | |
27 | rpcnne0 | |
|
28 | 27 | adantl | |
29 | 28 | ad2antrr | |
30 | divmul3 | |
|
31 | 26 17 29 30 | syl3anc | |
32 | oveq2 | |
|
33 | 32 | oveq1d | |
34 | 33 | eqcoms | |
35 | 34 | adantl | |
36 | 35 | adantr | |
37 | moddiffl | |
|
38 | 7 37 | sylan | |
39 | 38 | ad2antrr | |
40 | 36 39 | eqtrd | |
41 | 40 | eqeq1d | |
42 | 23 31 41 | 3bitr2d | |
43 | nn0ge0 | |
|
44 | 7 43 | jca | |
45 | rpregt0 | |
|
46 | divge0 | |
|
47 | 44 45 46 | syl2an | |
48 | 7 | adantr | |
49 | rpre | |
|
50 | 49 | adantl | |
51 | rpne0 | |
|
52 | 51 | adantl | |
53 | 48 50 52 | redivcld | |
54 | 0z | |
|
55 | flge | |
|
56 | 53 54 55 | sylancl | |
57 | 47 56 | mpbid | |
58 | breq2 | |
|
59 | 57 58 | syl5ibcom | |
60 | 59 | ad2antrr | |
61 | 42 60 | sylbid | |
62 | 61 | imp | |
63 | elnn0z | |
|
64 | 2 62 63 | sylanbrc | |
65 | oveq1 | |
|
66 | 65 | oveq1d | |
67 | 66 | eqeq2d | |
68 | 67 | adantl | |
69 | simpr | |
|
70 | 64 68 69 | rspcedvd | |
71 | nn0z | |
|
72 | modmuladdim | |
|
73 | 71 72 | sylan | |
74 | 73 | imp | |
75 | 70 74 | r19.29a | |
76 | 75 | ex | |