Metamath Proof Explorer


Theorem modmuladdnn0

Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion modmuladdnn0 A0M+AmodM=Bk0A=k M+B

Proof

Step Hyp Ref Expression
1 simpr A0M+AmodM=Bii
2 1 adantr A0M+AmodM=BiA=i M+Bi
3 eqcom A=i M+Bi M+B=A
4 nn0cn A0A
5 4 adantr A0M+A
6 5 ad2antrr A0M+AmodM=BiA
7 nn0re A0A
8 modcl AM+AmodM
9 7 8 sylan A0M+AmodM
10 9 recnd A0M+AmodM
11 10 adantr A0M+AmodM=BAmodM
12 eleq1 AmodM=BAmodMB
13 12 adantl A0M+AmodM=BAmodMB
14 11 13 mpbid A0M+AmodM=BB
15 14 adantr A0M+AmodM=BiB
16 zcn ii
17 16 adantl A0M+AmodM=Bii
18 rpcn M+M
19 18 adantl A0M+M
20 19 ad2antrr A0M+AmodM=BiM
21 17 20 mulcld A0M+AmodM=Bii M
22 6 15 21 subadd2d A0M+AmodM=BiAB=i Mi M+B=A
23 3 22 bitr4id A0M+AmodM=BiA=i M+BAB=i M
24 4 ad2antrr A0M+AmodM=BA
25 24 14 subcld A0M+AmodM=BAB
26 25 adantr A0M+AmodM=BiAB
27 rpcnne0 M+MM0
28 27 adantl A0M+MM0
29 28 ad2antrr A0M+AmodM=BiMM0
30 divmul3 ABiMM0ABM=iAB=i M
31 26 17 29 30 syl3anc A0M+AmodM=BiABM=iAB=i M
32 oveq2 B=AmodMAB=AAmodM
33 32 oveq1d B=AmodMABM=AAmodMM
34 33 eqcoms AmodM=BABM=AAmodMM
35 34 adantl A0M+AmodM=BABM=AAmodMM
36 35 adantr A0M+AmodM=BiABM=AAmodMM
37 moddiffl AM+AAmodMM=AM
38 7 37 sylan A0M+AAmodMM=AM
39 38 ad2antrr A0M+AmodM=BiAAmodMM=AM
40 36 39 eqtrd A0M+AmodM=BiABM=AM
41 40 eqeq1d A0M+AmodM=BiABM=iAM=i
42 23 31 41 3bitr2d A0M+AmodM=BiA=i M+BAM=i
43 nn0ge0 A00A
44 7 43 jca A0A0A
45 rpregt0 M+M0<M
46 divge0 A0AM0<M0AM
47 44 45 46 syl2an A0M+0AM
48 7 adantr A0M+A
49 rpre M+M
50 49 adantl A0M+M
51 rpne0 M+M0
52 51 adantl A0M+M0
53 48 50 52 redivcld A0M+AM
54 0z 0
55 flge AM00AM0AM
56 53 54 55 sylancl A0M+0AM0AM
57 47 56 mpbid A0M+0AM
58 breq2 AM=i0AM0i
59 57 58 syl5ibcom A0M+AM=i0i
60 59 ad2antrr A0M+AmodM=BiAM=i0i
61 42 60 sylbid A0M+AmodM=BiA=i M+B0i
62 61 imp A0M+AmodM=BiA=i M+B0i
63 elnn0z i0i0i
64 2 62 63 sylanbrc A0M+AmodM=BiA=i M+Bi0
65 oveq1 k=ik M=i M
66 65 oveq1d k=ik M+B=i M+B
67 66 eqeq2d k=iA=k M+BA=i M+B
68 67 adantl A0M+AmodM=BiA=i M+Bk=iA=k M+BA=i M+B
69 simpr A0M+AmodM=BiA=i M+BA=i M+B
70 64 68 69 rspcedvd A0M+AmodM=BiA=i M+Bk0A=k M+B
71 nn0z A0A
72 modmuladdim AM+AmodM=BiA=i M+B
73 71 72 sylan A0M+AmodM=BiA=i M+B
74 73 imp A0M+AmodM=BiA=i M+B
75 70 74 r19.29a A0M+AmodM=Bk0A=k M+B
76 75 ex A0M+AmodM=Bk0A=k M+B