| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 · 𝑀 ) = ( 𝑖 · 𝑀 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 · 𝑀 ) + 𝐵 ) = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
| 3 |
2
|
eqeq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
| 4 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℤ ) |
| 5 |
4
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝑖 ∈ ℤ ) |
| 6 |
|
eqcom |
⊢ ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( ( 𝑖 · 𝑀 ) + 𝐵 ) = 𝐴 ) |
| 7 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 10 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 11 |
|
modcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 12 |
10 11
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 15 |
|
eleq1 |
⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 mod 𝑀 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 mod 𝑀 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 17 |
14 16
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐵 ∈ ℂ ) |
| 18 |
17
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 19 |
|
zcn |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
| 21 |
|
rpcn |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℂ ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 24 |
20 23
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝑖 · 𝑀 ) ∈ ℂ ) |
| 25 |
9 18 24
|
subadd2d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ↔ ( ( 𝑖 · 𝑀 ) + 𝐵 ) = 𝐴 ) ) |
| 26 |
6 25
|
bitr4id |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
| 27 |
7
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐴 ∈ ℂ ) |
| 28 |
27 17
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 29 |
28
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 30 |
|
rpcnne0 |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
| 33 |
|
divmul3 |
⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
| 34 |
29 20 32 33
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 − ( 𝐴 mod 𝑀 ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 37 |
36
|
eqcoms |
⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 40 |
|
moddiffl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 41 |
10 40
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 43 |
39 42
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 44 |
43
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 ) ) |
| 45 |
26 34 44
|
3bitr2d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 ) ) |
| 46 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
| 47 |
10 46
|
jca |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 48 |
|
rpregt0 |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) |
| 49 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( 𝐴 / 𝑀 ) ) |
| 50 |
47 48 49
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( 𝐴 / 𝑀 ) ) |
| 51 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 52 |
|
rpre |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 54 |
|
rpne0 |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ≠ 0 ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 ) |
| 56 |
51 53 55
|
redivcld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 / 𝑀 ) ∈ ℝ ) |
| 57 |
|
0z |
⊢ 0 ∈ ℤ |
| 58 |
|
flge |
⊢ ( ( ( 𝐴 / 𝑀 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 𝐴 / 𝑀 ) ↔ 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) ) |
| 59 |
56 57 58
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 / 𝑀 ) ↔ 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) ) |
| 60 |
50 59
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 61 |
|
breq2 |
⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → ( 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ↔ 0 ≤ 𝑖 ) ) |
| 62 |
60 61
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → 0 ≤ 𝑖 ) ) |
| 63 |
62
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → 0 ≤ 𝑖 ) ) |
| 64 |
45 63
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) → 0 ≤ 𝑖 ) ) |
| 65 |
64
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 0 ≤ 𝑖 ) |
| 66 |
|
elnn0z |
⊢ ( 𝑖 ∈ ℕ0 ↔ ( 𝑖 ∈ ℤ ∧ 0 ≤ 𝑖 ) ) |
| 67 |
5 65 66
|
sylanbrc |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝑖 ∈ ℕ0 ) |
| 68 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
| 69 |
3 67 68
|
rspcedvdw |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
| 70 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 71 |
|
modmuladdim |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
| 72 |
70 71
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
| 73 |
72
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
| 74 |
69 73
|
r19.29a |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
| 75 |
74
|
ex |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |