Step |
Hyp |
Ref |
Expression |
1 |
|
modval |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
2 |
1
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) = ( 𝐴 − ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
5 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
7 |
|
rerpdivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
8 |
7
|
flcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ ) |
9 |
8
|
zcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
10 |
6 9
|
mulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℂ ) |
11 |
4 10
|
nncand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) |
12 |
2 11
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) / 𝐵 ) ) |
14 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
16 |
9 6 15
|
divcan3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
17 |
13 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |