| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modval |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 2 |
1
|
oveq2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( A mod B ) ) = ( A - ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) ) |
| 3 |
|
simpl |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) |
| 4 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 5 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 6 |
5
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 7 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 8 |
7
|
flcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. ZZ ) |
| 9 |
8
|
zcnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 10 |
6 9
|
mulcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) |
| 11 |
4 10
|
nncand |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
| 12 |
2 11
|
eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( A mod B ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
| 13 |
12
|
oveq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( ( B x. ( |_ ` ( A / B ) ) ) / B ) ) |
| 14 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 15 |
14
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
| 16 |
9 6 15
|
divcan3d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( |_ ` ( A / B ) ) ) / B ) = ( |_ ` ( A / B ) ) ) |
| 17 |
13 16
|
eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |