Metamath Proof Explorer


Theorem zmodfzo

Description: An integer mod B lies in the first B nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion zmodfzo ABAmodB0..^B

Proof

Step Hyp Ref Expression
1 zmodfz ABAmodB0B1
2 nnz BB
3 fzoval B0..^B=0B1
4 2 3 syl B0..^B=0B1
5 4 adantl AB0..^B=0B1
6 1 5 eleqtrrd ABAmodB0..^B