Description: An integer mod B lies in the first B nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodfzo | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ( 0 ..^ B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zmodfz | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ( 0 ... ( B - 1 ) ) ) | |
| 2 | nnz | |- ( B e. NN -> B e. ZZ ) | |
| 3 | fzoval | |- ( B e. ZZ -> ( 0 ..^ B ) = ( 0 ... ( B - 1 ) ) ) | |
| 4 | 2 3 | syl | |- ( B e. NN -> ( 0 ..^ B ) = ( 0 ... ( B - 1 ) ) ) | 
| 5 | 4 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> ( 0 ..^ B ) = ( 0 ... ( B - 1 ) ) ) | 
| 6 | 1 5 | eleqtrrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ( 0 ..^ B ) ) |