Metamath Proof Explorer


Theorem primrootlekpowne0

Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025)

Ref Expression
Hypotheses primrootlekpowne0.1 φ R CMnd
primrootlekpowne0.2 φ K
primrootlekpowne0.3 φ M R PrimRoots K
primrootlekpowne0.4 φ N 1 K 1
Assertion primrootlekpowne0 φ N R M 0 R

Proof

Step Hyp Ref Expression
1 primrootlekpowne0.1 φ R CMnd
2 primrootlekpowne0.2 φ K
3 primrootlekpowne0.3 φ M R PrimRoots K
4 primrootlekpowne0.4 φ N 1 K 1
5 oveq1 l = N l R M = N R M
6 5 eqeq1d l = N l R M = 0 R N R M = 0 R
7 breq2 l = N K l K N
8 6 7 imbi12d l = N l R M = 0 R K l N R M = 0 R K N
9 2 nnnn0d φ K 0
10 eqid R = R
11 1 9 10 isprimroot φ M R PrimRoots K M Base R K R M = 0 R l 0 l R M = 0 R K l
12 11 biimpd φ M R PrimRoots K M Base R K R M = 0 R l 0 l R M = 0 R K l
13 3 12 mpd φ M Base R K R M = 0 R l 0 l R M = 0 R K l
14 13 simp3d φ l 0 l R M = 0 R K l
15 14 adantr φ N R M = 0 R l 0 l R M = 0 R K l
16 elfznn N 1 K 1 N
17 4 16 syl φ N
18 17 nnnn0d φ N 0
19 18 adantr φ N R M = 0 R N 0
20 8 15 19 rspcdva φ N R M = 0 R N R M = 0 R K N
21 20 syldbl2 φ N R M = 0 R K N
22 17 nnred φ N
23 2 nnred φ K
24 1red φ 1
25 23 24 resubcld φ K 1
26 elfzle2 N 1 K 1 N K 1
27 4 26 syl φ N K 1
28 23 ltm1d φ K 1 < K
29 22 25 23 27 28 lelttrd φ N < K
30 22 23 ltnled φ N < K ¬ K N
31 29 30 mpbid φ ¬ K N
32 9 nn0zd φ K
33 dvdsle K N K N K N
34 32 17 33 syl2anc φ K N K N
35 34 con3d φ ¬ K N ¬ K N
36 31 35 mpd φ ¬ K N
37 36 adantr φ N R M = 0 R ¬ K N
38 21 37 pm2.21dd φ N R M = 0 R N R M 0 R
39 simpr φ N R M 0 R N R M 0 R
40 38 39 pm2.61dane φ N R M 0 R