| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primrootlekpowne0.1 |
|- ( ph -> R e. CMnd ) |
| 2 |
|
primrootlekpowne0.2 |
|- ( ph -> K e. NN ) |
| 3 |
|
primrootlekpowne0.3 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
| 4 |
|
primrootlekpowne0.4 |
|- ( ph -> N e. ( 1 ... ( K - 1 ) ) ) |
| 5 |
|
oveq1 |
|- ( l = N -> ( l ( .g ` R ) M ) = ( N ( .g ` R ) M ) ) |
| 6 |
5
|
eqeq1d |
|- ( l = N -> ( ( l ( .g ` R ) M ) = ( 0g ` R ) <-> ( N ( .g ` R ) M ) = ( 0g ` R ) ) ) |
| 7 |
|
breq2 |
|- ( l = N -> ( K || l <-> K || N ) ) |
| 8 |
6 7
|
imbi12d |
|- ( l = N -> ( ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) <-> ( ( N ( .g ` R ) M ) = ( 0g ` R ) -> K || N ) ) ) |
| 9 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 10 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 11 |
1 9 10
|
isprimroot |
|- ( ph -> ( M e. ( R PrimRoots K ) <-> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 12 |
11
|
biimpd |
|- ( ph -> ( M e. ( R PrimRoots K ) -> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 13 |
3 12
|
mpd |
|- ( ph -> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) |
| 14 |
13
|
simp3d |
|- ( ph -> A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ ( N ( .g ` R ) M ) = ( 0g ` R ) ) -> A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) |
| 16 |
|
elfznn |
|- ( N e. ( 1 ... ( K - 1 ) ) -> N e. NN ) |
| 17 |
4 16
|
syl |
|- ( ph -> N e. NN ) |
| 18 |
17
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ ( N ( .g ` R ) M ) = ( 0g ` R ) ) -> N e. NN0 ) |
| 20 |
8 15 19
|
rspcdva |
|- ( ( ph /\ ( N ( .g ` R ) M ) = ( 0g ` R ) ) -> ( ( N ( .g ` R ) M ) = ( 0g ` R ) -> K || N ) ) |
| 21 |
20
|
syldbl2 |
|- ( ( ph /\ ( N ( .g ` R ) M ) = ( 0g ` R ) ) -> K || N ) |
| 22 |
17
|
nnred |
|- ( ph -> N e. RR ) |
| 23 |
2
|
nnred |
|- ( ph -> K e. RR ) |
| 24 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 25 |
23 24
|
resubcld |
|- ( ph -> ( K - 1 ) e. RR ) |
| 26 |
|
elfzle2 |
|- ( N e. ( 1 ... ( K - 1 ) ) -> N <_ ( K - 1 ) ) |
| 27 |
4 26
|
syl |
|- ( ph -> N <_ ( K - 1 ) ) |
| 28 |
23
|
ltm1d |
|- ( ph -> ( K - 1 ) < K ) |
| 29 |
22 25 23 27 28
|
lelttrd |
|- ( ph -> N < K ) |
| 30 |
22 23
|
ltnled |
|- ( ph -> ( N < K <-> -. K <_ N ) ) |
| 31 |
29 30
|
mpbid |
|- ( ph -> -. K <_ N ) |
| 32 |
9
|
nn0zd |
|- ( ph -> K e. ZZ ) |
| 33 |
|
dvdsle |
|- ( ( K e. ZZ /\ N e. NN ) -> ( K || N -> K <_ N ) ) |
| 34 |
32 17 33
|
syl2anc |
|- ( ph -> ( K || N -> K <_ N ) ) |
| 35 |
34
|
con3d |
|- ( ph -> ( -. K <_ N -> -. K || N ) ) |
| 36 |
31 35
|
mpd |
|- ( ph -> -. K || N ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ ( N ( .g ` R ) M ) = ( 0g ` R ) ) -> -. K || N ) |
| 38 |
21 37
|
pm2.21dd |
|- ( ( ph /\ ( N ( .g ` R ) M ) = ( 0g ` R ) ) -> ( N ( .g ` R ) M ) =/= ( 0g ` R ) ) |
| 39 |
|
simpr |
|- ( ( ph /\ ( N ( .g ` R ) M ) =/= ( 0g ` R ) ) -> ( N ( .g ` R ) M ) =/= ( 0g ` R ) ) |
| 40 |
38 39
|
pm2.61dane |
|- ( ph -> ( N ( .g ` R ) M ) =/= ( 0g ` R ) ) |