Step |
Hyp |
Ref |
Expression |
1 |
|
primrootlekpowne0.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
primrootlekpowne0.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
primrootlekpowne0.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
4 |
|
primrootlekpowne0.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑙 = 𝑁 → ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑙 = 𝑁 → ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
7 |
|
breq2 |
⊢ ( 𝑙 = 𝑁 → ( 𝐾 ∥ 𝑙 ↔ 𝐾 ∥ 𝑁 ) ) |
8 |
6 7
|
imbi12d |
⊢ ( 𝑙 = 𝑁 → ( ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ↔ ( ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑁 ) ) ) |
9 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
10 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
11 |
1 9 10
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ↔ ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
12 |
11
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) → ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) ) |
13 |
3 12
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐾 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) ) |
14 |
13
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑙 ) ) |
16 |
|
elfznn |
⊢ ( 𝑁 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑁 ∈ ℕ ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
18 |
17
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → 𝑁 ∈ ℕ0 ) |
20 |
8 15 19
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) → 𝐾 ∥ 𝑁 ) ) |
21 |
20
|
syldbl2 |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → 𝐾 ∥ 𝑁 ) |
22 |
17
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
23 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
24 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
25 |
23 24
|
resubcld |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℝ ) |
26 |
|
elfzle2 |
⊢ ( 𝑁 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑁 ≤ ( 𝐾 − 1 ) ) |
27 |
4 26
|
syl |
⊢ ( 𝜑 → 𝑁 ≤ ( 𝐾 − 1 ) ) |
28 |
23
|
ltm1d |
⊢ ( 𝜑 → ( 𝐾 − 1 ) < 𝐾 ) |
29 |
22 25 23 27 28
|
lelttrd |
⊢ ( 𝜑 → 𝑁 < 𝐾 ) |
30 |
22 23
|
ltnled |
⊢ ( 𝜑 → ( 𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁 ) ) |
31 |
29 30
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐾 ≤ 𝑁 ) |
32 |
9
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
33 |
|
dvdsle |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁 ) ) |
34 |
32 17 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁 ) ) |
35 |
34
|
con3d |
⊢ ( 𝜑 → ( ¬ 𝐾 ≤ 𝑁 → ¬ 𝐾 ∥ 𝑁 ) ) |
36 |
31 35
|
mpd |
⊢ ( 𝜑 → ¬ 𝐾 ∥ 𝑁 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → ¬ 𝐾 ∥ 𝑁 ) |
38 |
21 37
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) |
40 |
38 39
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ 𝑅 ) 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) |