Step |
Hyp |
Ref |
Expression |
1 |
|
primrootspoweq0.1 |
|- ( ph -> R e. CMnd ) |
2 |
|
primrootspoweq0.2 |
|- ( ph -> K e. NN ) |
3 |
|
primrootspoweq0.3 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
4 |
|
primrootspoweq0.4 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
5 |
|
primrootspoweq0.5 |
|- ( ph -> N e. ZZ ) |
6 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> N = ( ( x x. K ) + y ) ) |
7 |
6
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( ( ( x x. K ) + y ) ( .g ` ( R |`s U ) ) M ) ) |
8 |
1 2 4
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
9 |
8
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
10 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( R |`s U ) e. Abel ) |
11 |
10
|
ablgrpd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( R |`s U ) e. Grp ) |
12 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> x e. ZZ ) |
13 |
2
|
nnzd |
|- ( ph -> K e. ZZ ) |
14 |
13
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> K e. ZZ ) |
15 |
12 14
|
zmulcld |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( x x. K ) e. ZZ ) |
16 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> y e. ( 0 ... ( K - 1 ) ) ) |
17 |
16
|
elfzelzd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> y e. ZZ ) |
18 |
8
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
19 |
3 18
|
eleqtrd |
|- ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) |
20 |
|
ablcmn |
|- ( ( R |`s U ) e. Abel -> ( R |`s U ) e. CMnd ) |
21 |
9 20
|
syl |
|- ( ph -> ( R |`s U ) e. CMnd ) |
22 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
23 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
24 |
21 22 23
|
isprimroot |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
25 |
24
|
biimpd |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
26 |
19 25
|
mpd |
|- ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
27 |
26
|
simp1d |
|- ( ph -> M e. ( Base ` ( R |`s U ) ) ) |
28 |
27
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> M e. ( Base ` ( R |`s U ) ) ) |
29 |
15 17 28
|
3jca |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( x x. K ) e. ZZ /\ y e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
30 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
31 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
32 |
30 23 31
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( ( x x. K ) e. ZZ /\ y e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( ( x x. K ) + y ) ( .g ` ( R |`s U ) ) M ) = ( ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( y ( .g ` ( R |`s U ) ) M ) ) ) |
33 |
11 29 32
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( ( x x. K ) + y ) ( .g ` ( R |`s U ) ) M ) = ( ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( y ( .g ` ( R |`s U ) ) M ) ) ) |
34 |
12 14 28
|
3jca |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( x e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
35 |
30 23
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( x e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) = ( x ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
36 |
11 34 35
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) = ( x ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
37 |
26
|
simp2d |
|- ( ph -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
38 |
37
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
39 |
38
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( x ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
40 |
|
eqid |
|- ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) |
41 |
30 23 40
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
42 |
11 12 41
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( x ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
43 |
39 42
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( x ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
44 |
36 43
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
45 |
44
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( y ( .g ` ( R |`s U ) ) M ) ) = ( ( 0g ` ( R |`s U ) ) ( +g ` ( R |`s U ) ) ( y ( .g ` ( R |`s U ) ) M ) ) ) |
46 |
30 23 11 17 28
|
mulgcld |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
47 |
30 31 40 11 46
|
grplidd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( 0g ` ( R |`s U ) ) ( +g ` ( R |`s U ) ) ( y ( .g ` ( R |`s U ) ) M ) ) = ( y ( .g ` ( R |`s U ) ) M ) ) |
48 |
45 47
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( ( x x. K ) ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( y ( .g ` ( R |`s U ) ) M ) ) = ( y ( .g ` ( R |`s U ) ) M ) ) |
49 |
33 48
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( ( x x. K ) + y ) ( .g ` ( R |`s U ) ) M ) = ( y ( .g ` ( R |`s U ) ) M ) ) |
50 |
7 49
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( y ( .g ` ( R |`s U ) ) M ) ) |
51 |
10 20
|
syl |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( R |`s U ) e. CMnd ) |
52 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> K e. NN ) |
53 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> M e. ( R PrimRoots K ) ) |
54 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
55 |
53 54
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> M e. ( ( R |`s U ) PrimRoots K ) ) |
56 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
57 |
56
|
addlidd |
|- ( ph -> ( 0 + 1 ) = 1 ) |
58 |
2
|
nnge1d |
|- ( ph -> 1 <_ K ) |
59 |
57 58
|
eqbrtrd |
|- ( ph -> ( 0 + 1 ) <_ K ) |
60 |
|
0red |
|- ( ph -> 0 e. RR ) |
61 |
|
1red |
|- ( ph -> 1 e. RR ) |
62 |
2
|
nnred |
|- ( ph -> K e. RR ) |
63 |
|
leaddsub |
|- ( ( 0 e. RR /\ 1 e. RR /\ K e. RR ) -> ( ( 0 + 1 ) <_ K <-> 0 <_ ( K - 1 ) ) ) |
64 |
60 61 62 63
|
syl3anc |
|- ( ph -> ( ( 0 + 1 ) <_ K <-> 0 <_ ( K - 1 ) ) ) |
65 |
59 64
|
mpbid |
|- ( ph -> 0 <_ ( K - 1 ) ) |
66 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
67 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
68 |
13 67
|
zsubcld |
|- ( ph -> ( K - 1 ) e. ZZ ) |
69 |
|
eluz |
|- ( ( 0 e. ZZ /\ ( K - 1 ) e. ZZ ) -> ( ( K - 1 ) e. ( ZZ>= ` 0 ) <-> 0 <_ ( K - 1 ) ) ) |
70 |
66 68 69
|
syl2anc |
|- ( ph -> ( ( K - 1 ) e. ( ZZ>= ` 0 ) <-> 0 <_ ( K - 1 ) ) ) |
71 |
65 70
|
mpbird |
|- ( ph -> ( K - 1 ) e. ( ZZ>= ` 0 ) ) |
72 |
|
elfzp12 |
|- ( ( K - 1 ) e. ( ZZ>= ` 0 ) -> ( y e. ( 0 ... ( K - 1 ) ) <-> ( y = 0 \/ y e. ( ( 0 + 1 ) ... ( K - 1 ) ) ) ) ) |
73 |
71 72
|
syl |
|- ( ph -> ( y e. ( 0 ... ( K - 1 ) ) <-> ( y = 0 \/ y e. ( ( 0 + 1 ) ... ( K - 1 ) ) ) ) ) |
74 |
73
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y e. ( 0 ... ( K - 1 ) ) <-> ( y = 0 \/ y e. ( ( 0 + 1 ) ... ( K - 1 ) ) ) ) ) |
75 |
74
|
biimpd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y e. ( 0 ... ( K - 1 ) ) -> ( y = 0 \/ y e. ( ( 0 + 1 ) ... ( K - 1 ) ) ) ) ) |
76 |
16 75
|
mpd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y = 0 \/ y e. ( ( 0 + 1 ) ... ( K - 1 ) ) ) ) |
77 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> x e. ZZ ) |
78 |
52
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> K e. NN ) |
79 |
78
|
nnzd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> K e. ZZ ) |
80 |
|
dvdsmul2 |
|- ( ( x e. ZZ /\ K e. ZZ ) -> K || ( x x. K ) ) |
81 |
77 79 80
|
syl2anc |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> K || ( x x. K ) ) |
82 |
77
|
zcnd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> x e. CC ) |
83 |
78
|
nncnd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> K e. CC ) |
84 |
82 83
|
mulcld |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> ( x x. K ) e. CC ) |
85 |
84
|
addridd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> ( ( x x. K ) + 0 ) = ( x x. K ) ) |
86 |
85
|
eqcomd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> ( x x. K ) = ( ( x x. K ) + 0 ) ) |
87 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> y = 0 ) |
88 |
87
|
eqcomd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> 0 = y ) |
89 |
88
|
oveq2d |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> ( ( x x. K ) + 0 ) = ( ( x x. K ) + y ) ) |
90 |
86 89
|
eqtrd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> ( x x. K ) = ( ( x x. K ) + y ) ) |
91 |
81 90
|
breqtrd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> K || ( ( x x. K ) + y ) ) |
92 |
6
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> N = ( ( x x. K ) + y ) ) |
93 |
92
|
eqcomd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> ( ( x x. K ) + y ) = N ) |
94 |
91 93
|
breqtrd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> K || N ) |
95 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> -. K || N ) |
96 |
94 95
|
pm2.21dd |
|- ( ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) /\ y = 0 ) -> y e. ( 1 ... ( K - 1 ) ) ) |
97 |
96
|
ex |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y = 0 -> y e. ( 1 ... ( K - 1 ) ) ) ) |
98 |
|
1cnd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> 1 e. CC ) |
99 |
98
|
addlidd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( 0 + 1 ) = 1 ) |
100 |
99
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( 0 + 1 ) ... ( K - 1 ) ) = ( 1 ... ( K - 1 ) ) ) |
101 |
|
ssidd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( 1 ... ( K - 1 ) ) C_ ( 1 ... ( K - 1 ) ) ) |
102 |
100 101
|
eqsstrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( 0 + 1 ) ... ( K - 1 ) ) C_ ( 1 ... ( K - 1 ) ) ) |
103 |
102
|
sseld |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y e. ( ( 0 + 1 ) ... ( K - 1 ) ) -> y e. ( 1 ... ( K - 1 ) ) ) ) |
104 |
97 103
|
jaod |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( ( y = 0 \/ y e. ( ( 0 + 1 ) ... ( K - 1 ) ) ) -> y e. ( 1 ... ( K - 1 ) ) ) ) |
105 |
76 104
|
mpd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> y e. ( 1 ... ( K - 1 ) ) ) |
106 |
51 52 55 105
|
primrootlekpowne0 |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( y ( .g ` ( R |`s U ) ) M ) =/= ( 0g ` ( R |`s U ) ) ) |
107 |
50 106
|
eqnetrd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> ( N ( .g ` ( R |`s U ) ) M ) =/= ( 0g ` ( R |`s U ) ) ) |
108 |
107
|
neneqd |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ -. K || N ) -> -. ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
109 |
108
|
ex |
|- ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) -> ( -. K || N -> -. ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) ) |
110 |
109
|
con4d |
|- ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) -> ( ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || N ) ) |
111 |
|
simp-4l |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ K || N ) -> ph ) |
112 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ K || N ) -> K || N ) |
113 |
111 112
|
jca |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ K || N ) -> ( ph /\ K || N ) ) |
114 |
|
divides |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K || N <-> E. x e. ZZ ( x x. K ) = N ) ) |
115 |
13 5 114
|
syl2anc |
|- ( ph -> ( K || N <-> E. x e. ZZ ( x x. K ) = N ) ) |
116 |
115
|
biimpd |
|- ( ph -> ( K || N -> E. x e. ZZ ( x x. K ) = N ) ) |
117 |
116
|
imp |
|- ( ( ph /\ K || N ) -> E. x e. ZZ ( x x. K ) = N ) |
118 |
|
simpr |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( y x. K ) = N ) |
119 |
118
|
eqcomd |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> N = ( y x. K ) ) |
120 |
119
|
oveq1d |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( ( y x. K ) ( .g ` ( R |`s U ) ) M ) ) |
121 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( R |`s U ) e. Abel ) |
122 |
|
ablgrp |
|- ( ( R |`s U ) e. Abel -> ( R |`s U ) e. Grp ) |
123 |
121 122
|
syl |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( R |`s U ) e. Grp ) |
124 |
|
simplr |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> y e. ZZ ) |
125 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> K e. ZZ ) |
126 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> M e. ( Base ` ( R |`s U ) ) ) |
127 |
124 125 126
|
3jca |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( y e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
128 |
30 23
|
mulgass |
|- ( ( ( R |`s U ) e. Grp /\ ( y e. ZZ /\ K e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( y x. K ) ( .g ` ( R |`s U ) ) M ) = ( y ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
129 |
123 127 128
|
syl2anc |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( ( y x. K ) ( .g ` ( R |`s U ) ) M ) = ( y ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) ) |
130 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
131 |
130
|
oveq2d |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( y ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( y ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) ) |
132 |
30 23 40
|
mulgz |
|- ( ( ( R |`s U ) e. Grp /\ y e. ZZ ) -> ( y ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
133 |
123 124 132
|
syl2anc |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( y ( .g ` ( R |`s U ) ) ( 0g ` ( R |`s U ) ) ) = ( 0g ` ( R |`s U ) ) ) |
134 |
131 133
|
eqtrd |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( y ( .g ` ( R |`s U ) ) ( K ( .g ` ( R |`s U ) ) M ) ) = ( 0g ` ( R |`s U ) ) ) |
135 |
129 134
|
eqtrd |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( ( y x. K ) ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
136 |
120 135
|
eqtrd |
|- ( ( ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) /\ y e. ZZ ) /\ ( y x. K ) = N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
137 |
|
nfv |
|- F/ y ( x x. K ) = N |
138 |
|
nfv |
|- F/ x ( y x. K ) = N |
139 |
|
oveq1 |
|- ( x = y -> ( x x. K ) = ( y x. K ) ) |
140 |
139
|
eqeq1d |
|- ( x = y -> ( ( x x. K ) = N <-> ( y x. K ) = N ) ) |
141 |
137 138 140
|
cbvrexw |
|- ( E. x e. ZZ ( x x. K ) = N <-> E. y e. ZZ ( y x. K ) = N ) |
142 |
141
|
biimpi |
|- ( E. x e. ZZ ( x x. K ) = N -> E. y e. ZZ ( y x. K ) = N ) |
143 |
142
|
adantl |
|- ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) -> E. y e. ZZ ( y x. K ) = N ) |
144 |
136 143
|
r19.29a |
|- ( ( ph /\ E. x e. ZZ ( x x. K ) = N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
145 |
144
|
ex |
|- ( ph -> ( E. x e. ZZ ( x x. K ) = N -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) ) |
146 |
145
|
adantr |
|- ( ( ph /\ K || N ) -> ( E. x e. ZZ ( x x. K ) = N -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) ) |
147 |
117 146
|
mpd |
|- ( ( ph /\ K || N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
148 |
113 147
|
syl |
|- ( ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) /\ K || N ) -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
149 |
148
|
ex |
|- ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) -> ( K || N -> ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) ) |
150 |
110 149
|
impbid |
|- ( ( ( ( ph /\ x e. ZZ ) /\ y e. ( 0 ... ( K - 1 ) ) ) /\ N = ( ( x x. K ) + y ) ) -> ( ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) <-> K || N ) ) |
151 |
5 2
|
remexz |
|- ( ph -> E. x e. ZZ E. y e. ( 0 ... ( K - 1 ) ) N = ( ( x x. K ) + y ) ) |
152 |
150 151
|
r19.29vva |
|- ( ph -> ( ( N ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) <-> K || N ) ) |