| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primrootspoweq0.1 |
|
| 2 |
|
primrootspoweq0.2 |
|
| 3 |
|
primrootspoweq0.3 |
|
| 4 |
|
primrootspoweq0.4 |
|
| 5 |
|
primrootspoweq0.5 |
|
| 6 |
|
simplr |
|
| 7 |
6
|
oveq1d |
|
| 8 |
1 2 4
|
primrootsunit |
|
| 9 |
8
|
simprd |
|
| 10 |
9
|
ad4antr |
|
| 11 |
10
|
ablgrpd |
|
| 12 |
|
simp-4r |
|
| 13 |
2
|
nnzd |
|
| 14 |
13
|
ad4antr |
|
| 15 |
12 14
|
zmulcld |
|
| 16 |
|
simpllr |
|
| 17 |
16
|
elfzelzd |
|
| 18 |
8
|
simpld |
|
| 19 |
3 18
|
eleqtrd |
|
| 20 |
|
ablcmn |
|
| 21 |
9 20
|
syl |
|
| 22 |
2
|
nnnn0d |
|
| 23 |
|
eqid |
|
| 24 |
21 22 23
|
isprimroot |
|
| 25 |
24
|
biimpd |
|
| 26 |
19 25
|
mpd |
|
| 27 |
26
|
simp1d |
|
| 28 |
27
|
ad4antr |
|
| 29 |
15 17 28
|
3jca |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
30 23 31
|
mulgdir |
|
| 33 |
11 29 32
|
syl2anc |
|
| 34 |
12 14 28
|
3jca |
|
| 35 |
30 23
|
mulgass |
|
| 36 |
11 34 35
|
syl2anc |
|
| 37 |
26
|
simp2d |
|
| 38 |
37
|
ad4antr |
|
| 39 |
38
|
oveq2d |
|
| 40 |
|
eqid |
|
| 41 |
30 23 40
|
mulgz |
|
| 42 |
11 12 41
|
syl2anc |
|
| 43 |
39 42
|
eqtrd |
|
| 44 |
36 43
|
eqtrd |
|
| 45 |
44
|
oveq1d |
|
| 46 |
30 23 11 17 28
|
mulgcld |
|
| 47 |
30 31 40 11 46
|
grplidd |
|
| 48 |
45 47
|
eqtrd |
|
| 49 |
33 48
|
eqtrd |
|
| 50 |
7 49
|
eqtrd |
|
| 51 |
10 20
|
syl |
|
| 52 |
2
|
ad4antr |
|
| 53 |
3
|
ad4antr |
|
| 54 |
18
|
ad4antr |
|
| 55 |
53 54
|
eleqtrd |
|
| 56 |
|
1cnd |
|
| 57 |
56
|
addlidd |
|
| 58 |
2
|
nnge1d |
|
| 59 |
57 58
|
eqbrtrd |
|
| 60 |
|
0red |
|
| 61 |
|
1red |
|
| 62 |
2
|
nnred |
|
| 63 |
|
leaddsub |
|
| 64 |
60 61 62 63
|
syl3anc |
|
| 65 |
59 64
|
mpbid |
|
| 66 |
|
0zd |
|
| 67 |
|
1zzd |
|
| 68 |
13 67
|
zsubcld |
|
| 69 |
|
eluz |
|
| 70 |
66 68 69
|
syl2anc |
|
| 71 |
65 70
|
mpbird |
|
| 72 |
|
elfzp12 |
|
| 73 |
71 72
|
syl |
|
| 74 |
73
|
ad4antr |
|
| 75 |
74
|
biimpd |
|
| 76 |
16 75
|
mpd |
|
| 77 |
|
simp-5r |
|
| 78 |
52
|
adantr |
|
| 79 |
78
|
nnzd |
|
| 80 |
|
dvdsmul2 |
|
| 81 |
77 79 80
|
syl2anc |
|
| 82 |
77
|
zcnd |
|
| 83 |
78
|
nncnd |
|
| 84 |
82 83
|
mulcld |
|
| 85 |
84
|
addridd |
|
| 86 |
85
|
eqcomd |
|
| 87 |
|
simpr |
|
| 88 |
87
|
eqcomd |
|
| 89 |
88
|
oveq2d |
|
| 90 |
86 89
|
eqtrd |
|
| 91 |
81 90
|
breqtrd |
|
| 92 |
6
|
adantr |
|
| 93 |
92
|
eqcomd |
|
| 94 |
91 93
|
breqtrd |
|
| 95 |
|
simplr |
|
| 96 |
94 95
|
pm2.21dd |
|
| 97 |
96
|
ex |
|
| 98 |
|
1cnd |
|
| 99 |
98
|
addlidd |
|
| 100 |
99
|
oveq1d |
|
| 101 |
|
ssidd |
|
| 102 |
100 101
|
eqsstrd |
|
| 103 |
102
|
sseld |
|
| 104 |
97 103
|
jaod |
|
| 105 |
76 104
|
mpd |
|
| 106 |
51 52 55 105
|
primrootlekpowne0 |
|
| 107 |
50 106
|
eqnetrd |
|
| 108 |
107
|
neneqd |
|
| 109 |
108
|
ex |
|
| 110 |
109
|
con4d |
|
| 111 |
|
simp-4l |
|
| 112 |
|
simpr |
|
| 113 |
111 112
|
jca |
|
| 114 |
|
divides |
|
| 115 |
13 5 114
|
syl2anc |
|
| 116 |
115
|
biimpd |
|
| 117 |
116
|
imp |
|
| 118 |
|
simpr |
|
| 119 |
118
|
eqcomd |
|
| 120 |
119
|
oveq1d |
|
| 121 |
9
|
ad3antrrr |
|
| 122 |
|
ablgrp |
|
| 123 |
121 122
|
syl |
|
| 124 |
|
simplr |
|
| 125 |
13
|
ad3antrrr |
|
| 126 |
27
|
ad3antrrr |
|
| 127 |
124 125 126
|
3jca |
|
| 128 |
30 23
|
mulgass |
|
| 129 |
123 127 128
|
syl2anc |
|
| 130 |
37
|
ad3antrrr |
|
| 131 |
130
|
oveq2d |
|
| 132 |
30 23 40
|
mulgz |
|
| 133 |
123 124 132
|
syl2anc |
|
| 134 |
131 133
|
eqtrd |
|
| 135 |
129 134
|
eqtrd |
|
| 136 |
120 135
|
eqtrd |
|
| 137 |
|
nfv |
|
| 138 |
|
nfv |
|
| 139 |
|
oveq1 |
|
| 140 |
139
|
eqeq1d |
|
| 141 |
137 138 140
|
cbvrexw |
|
| 142 |
141
|
biimpi |
|
| 143 |
142
|
adantl |
|
| 144 |
136 143
|
r19.29a |
|
| 145 |
144
|
ex |
|
| 146 |
145
|
adantr |
|
| 147 |
117 146
|
mpd |
|
| 148 |
113 147
|
syl |
|
| 149 |
148
|
ex |
|
| 150 |
110 149
|
impbid |
|
| 151 |
5 2
|
remexz |
|
| 152 |
150 151
|
r19.29vva |
|