Step |
Hyp |
Ref |
Expression |
1 |
|
primrootspoweq0.1 |
|
2 |
|
primrootspoweq0.2 |
|
3 |
|
primrootspoweq0.3 |
|
4 |
|
primrootspoweq0.4 |
|
5 |
|
primrootspoweq0.5 |
|
6 |
|
simplr |
|
7 |
6
|
oveq1d |
|
8 |
1 2 4
|
primrootsunit |
|
9 |
8
|
simprd |
|
10 |
9
|
ad4antr |
|
11 |
10
|
ablgrpd |
|
12 |
|
simp-4r |
|
13 |
2
|
nnzd |
|
14 |
13
|
ad4antr |
|
15 |
12 14
|
zmulcld |
|
16 |
|
simpllr |
|
17 |
16
|
elfzelzd |
|
18 |
8
|
simpld |
|
19 |
3 18
|
eleqtrd |
|
20 |
|
ablcmn |
|
21 |
9 20
|
syl |
|
22 |
2
|
nnnn0d |
|
23 |
|
eqid |
|
24 |
21 22 23
|
isprimroot |
|
25 |
24
|
biimpd |
|
26 |
19 25
|
mpd |
|
27 |
26
|
simp1d |
|
28 |
27
|
ad4antr |
|
29 |
15 17 28
|
3jca |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
30 23 31
|
mulgdir |
|
33 |
11 29 32
|
syl2anc |
|
34 |
12 14 28
|
3jca |
|
35 |
30 23
|
mulgass |
|
36 |
11 34 35
|
syl2anc |
|
37 |
26
|
simp2d |
|
38 |
37
|
ad4antr |
|
39 |
38
|
oveq2d |
|
40 |
|
eqid |
|
41 |
30 23 40
|
mulgz |
|
42 |
11 12 41
|
syl2anc |
|
43 |
39 42
|
eqtrd |
|
44 |
36 43
|
eqtrd |
|
45 |
44
|
oveq1d |
|
46 |
30 23 11 17 28
|
mulgcld |
|
47 |
30 31 40 11 46
|
grplidd |
|
48 |
45 47
|
eqtrd |
|
49 |
33 48
|
eqtrd |
|
50 |
7 49
|
eqtrd |
|
51 |
10 20
|
syl |
|
52 |
2
|
ad4antr |
|
53 |
3
|
ad4antr |
|
54 |
18
|
ad4antr |
|
55 |
53 54
|
eleqtrd |
|
56 |
|
1cnd |
|
57 |
56
|
addlidd |
|
58 |
2
|
nnge1d |
|
59 |
57 58
|
eqbrtrd |
|
60 |
|
0red |
|
61 |
|
1red |
|
62 |
2
|
nnred |
|
63 |
|
leaddsub |
|
64 |
60 61 62 63
|
syl3anc |
|
65 |
59 64
|
mpbid |
|
66 |
|
0zd |
|
67 |
|
1zzd |
|
68 |
13 67
|
zsubcld |
|
69 |
|
eluz |
|
70 |
66 68 69
|
syl2anc |
|
71 |
65 70
|
mpbird |
|
72 |
|
elfzp12 |
|
73 |
71 72
|
syl |
|
74 |
73
|
ad4antr |
|
75 |
74
|
biimpd |
|
76 |
16 75
|
mpd |
|
77 |
|
simp-5r |
|
78 |
52
|
adantr |
|
79 |
78
|
nnzd |
|
80 |
|
dvdsmul2 |
|
81 |
77 79 80
|
syl2anc |
|
82 |
77
|
zcnd |
|
83 |
78
|
nncnd |
|
84 |
82 83
|
mulcld |
|
85 |
84
|
addridd |
|
86 |
85
|
eqcomd |
|
87 |
|
simpr |
|
88 |
87
|
eqcomd |
|
89 |
88
|
oveq2d |
|
90 |
86 89
|
eqtrd |
|
91 |
81 90
|
breqtrd |
|
92 |
6
|
adantr |
|
93 |
92
|
eqcomd |
|
94 |
91 93
|
breqtrd |
|
95 |
|
simplr |
|
96 |
94 95
|
pm2.21dd |
|
97 |
96
|
ex |
|
98 |
|
1cnd |
|
99 |
98
|
addlidd |
|
100 |
99
|
oveq1d |
|
101 |
|
ssidd |
|
102 |
100 101
|
eqsstrd |
|
103 |
102
|
sseld |
|
104 |
97 103
|
jaod |
|
105 |
76 104
|
mpd |
|
106 |
51 52 55 105
|
primrootlekpowne0 |
|
107 |
50 106
|
eqnetrd |
|
108 |
107
|
neneqd |
|
109 |
108
|
ex |
|
110 |
109
|
con4d |
|
111 |
|
simp-4l |
|
112 |
|
simpr |
|
113 |
111 112
|
jca |
|
114 |
|
divides |
|
115 |
13 5 114
|
syl2anc |
|
116 |
115
|
biimpd |
|
117 |
116
|
imp |
|
118 |
|
simpr |
|
119 |
118
|
eqcomd |
|
120 |
119
|
oveq1d |
|
121 |
9
|
ad3antrrr |
|
122 |
|
ablgrp |
|
123 |
121 122
|
syl |
|
124 |
|
simplr |
|
125 |
13
|
ad3antrrr |
|
126 |
27
|
ad3antrrr |
|
127 |
124 125 126
|
3jca |
|
128 |
30 23
|
mulgass |
|
129 |
123 127 128
|
syl2anc |
|
130 |
37
|
ad3antrrr |
|
131 |
130
|
oveq2d |
|
132 |
30 23 40
|
mulgz |
|
133 |
123 124 132
|
syl2anc |
|
134 |
131 133
|
eqtrd |
|
135 |
129 134
|
eqtrd |
|
136 |
120 135
|
eqtrd |
|
137 |
|
nfv |
|
138 |
|
nfv |
|
139 |
|
oveq1 |
|
140 |
139
|
eqeq1d |
|
141 |
137 138 140
|
cbvrexw |
|
142 |
141
|
biimpi |
|
143 |
142
|
adantl |
|
144 |
136 143
|
r19.29a |
|
145 |
144
|
ex |
|
146 |
145
|
adantr |
|
147 |
117 146
|
mpd |
|
148 |
113 147
|
syl |
|
149 |
148
|
ex |
|
150 |
110 149
|
impbid |
|
151 |
5 2
|
remexz |
|
152 |
150 151
|
r19.29vva |
|