Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p1.1 |
|
2 |
|
aks6d1c1p1.2 |
|
3 |
|
aks6d1c1p1.3 |
|
4 |
|
simpl |
|
5 |
4
|
eleq1d |
|
6 |
|
simpr |
|
7 |
6
|
eleq1d |
|
8 |
6
|
fveq2d |
|
9 |
8
|
fveq1d |
|
10 |
4 9
|
oveq12d |
|
11 |
4
|
oveq1d |
|
12 |
8 11
|
fveq12d |
|
13 |
10 12
|
eqeq12d |
|
14 |
13
|
ralbidv |
|
15 |
5 7 14
|
3anbi123d |
|
16 |
15 1
|
brabga |
|
17 |
3 2 16
|
syl2anc |
|
18 |
17
|
biimpd |
|
19 |
18
|
imp |
|
20 |
19
|
simp3d |
|
21 |
20
|
ex |
|
22 |
3 2
|
jca |
|
23 |
|
df-3an |
|
24 |
23
|
bicomi |
|
25 |
24
|
a1i |
|
26 |
17
|
biimprd |
|
27 |
25 26
|
sylbid |
|
28 |
27
|
imp |
|
29 |
28
|
anassrs |
|
30 |
29
|
ex |
|
31 |
22 30
|
mpdan |
|
32 |
21 31
|
impbid |
|