Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Miscellaneous results for AKS formalisation
aks6d1c1p1rcl
Next ⟩
aks6d1c1p2
Metamath Proof Explorer
Ascii
Unicode
Theorem
aks6d1c1p1rcl
Description:
Reverse closure of the introspective relation.
(Contributed by
metakunt
, 25-Apr-2025)
Ref
Expression
Hypotheses
aks6d1c1p1rcl.1
⊢
∼
˙
=
e
f
|
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
aks6d1c1p1rcl.2
⊢
φ
→
E
∼
˙
F
Assertion
aks6d1c1p1rcl
⊢
φ
→
E
∈
ℕ
∧
F
∈
B
Proof
Step
Hyp
Ref
Expression
1
aks6d1c1p1rcl.1
⊢
∼
˙
=
e
f
|
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
2
aks6d1c1p1rcl.2
⊢
φ
→
E
∼
˙
F
3
df-3an
⊢
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
↔
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
4
3
opabbii
⊢
e
f
|
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
=
e
f
|
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
5
1
4
eqtri
⊢
∼
˙
=
e
f
|
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
6
opabssxp
⊢
e
f
|
e
∈
ℕ
∧
f
∈
B
∧
∀
y
∈
K
PrimRoots
R
e
×
˙
O
⁡
f
⁡
y
=
O
⁡
f
⁡
e
D
y
⊆
ℕ
×
B
7
5
6
eqsstri
⊢
∼
˙
⊆
ℕ
×
B
8
7
brel
⊢
E
∼
˙
F
→
E
∈
ℕ
∧
F
∈
B
9
2
8
syl
⊢
φ
→
E
∈
ℕ
∧
F
∈
B