Metamath Proof Explorer


Theorem aks6d1c1p1rcl

Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses aks6d1c1p1rcl.1 ˙ = e f | e f B y K PrimRoots R e × ˙ O f y = O f e D y
aks6d1c1p1rcl.2 φ E ˙ F
Assertion aks6d1c1p1rcl φ E F B

Proof

Step Hyp Ref Expression
1 aks6d1c1p1rcl.1 ˙ = e f | e f B y K PrimRoots R e × ˙ O f y = O f e D y
2 aks6d1c1p1rcl.2 φ E ˙ F
3 df-3an e f B y K PrimRoots R e × ˙ O f y = O f e D y e f B y K PrimRoots R e × ˙ O f y = O f e D y
4 3 opabbii e f | e f B y K PrimRoots R e × ˙ O f y = O f e D y = e f | e f B y K PrimRoots R e × ˙ O f y = O f e D y
5 1 4 eqtri ˙ = e f | e f B y K PrimRoots R e × ˙ O f y = O f e D y
6 opabssxp e f | e f B y K PrimRoots R e × ˙ O f y = O f e D y × B
7 5 6 eqsstri ˙ × B
8 7 brel E ˙ F E F B
9 2 8 syl φ E F B