Metamath Proof Explorer


Theorem aks6d1c1p1rcl

Description: Reverse closure of the introspective relation. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses aks6d1c1p1rcl.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) }
aks6d1c1p1rcl.2 ( 𝜑𝐸 𝐹 )
Assertion aks6d1c1p1rcl ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 aks6d1c1p1rcl.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) }
2 aks6d1c1p1rcl.2 ( 𝜑𝐸 𝐹 )
3 df-3an ( ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) ↔ ( ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) )
4 3 opabbii { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) }
5 1 4 eqtri = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) }
6 opabssxp { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } ⊆ ( ℕ × 𝐵 )
7 5 6 eqsstri ⊆ ( ℕ × 𝐵 )
8 7 brel ( 𝐸 𝐹 → ( 𝐸 ∈ ℕ ∧ 𝐹𝐵 ) )
9 2 8 syl ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹𝐵 ) )