Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p1rcl.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } |
2 |
|
aks6d1c1p1rcl.2 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐹 ) |
3 |
|
df-3an |
⊢ ( ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) ↔ ( ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) ) |
4 |
3
|
opabbii |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } |
5 |
1 4
|
eqtri |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } |
6 |
|
opabssxp |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝐾 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 𝐷 𝑦 ) ) ) } ⊆ ( ℕ × 𝐵 ) |
7 |
5 6
|
eqsstri |
⊢ ∼ ⊆ ( ℕ × 𝐵 ) |
8 |
7
|
brel |
⊢ ( 𝐸 ∼ 𝐹 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |