Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p2.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1p2.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1p2.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1p2.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1p2.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1p2.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1p2.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1p2.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1p2.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
10 |
|
aks6d1c1p2.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
11 |
|
aks6d1c1p2.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
12 |
|
aks6d1c1p2.12 |
⊢ + = ( +g ‘ 𝑆 ) |
13 |
|
aks6d1c1p2.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
14 |
|
aks6d1c1p2.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
15 |
|
aks6d1c1p2.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
|
aks6d1c1p2.16 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
17 |
|
aks6d1c1p2.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
18 |
|
aks6d1c1p2.18 |
⊢ 𝐹 = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
19 |
|
aks6d1c1p2.19 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
20 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
21 |
13 20
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
22 |
21
|
simprd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
23 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
25 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
26 |
24 25 7
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
27 |
26
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
28 |
27
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) |
29 |
28
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
31 |
6 30
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
32 |
31
|
eqcomi |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) ) |
35 |
34
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
36 |
29 35
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
38 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝐹 = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑂 ‘ 𝐹 ) = ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
40 |
39
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) |
41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝑃 ↑ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) ) |
42 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ CRing ) |
43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
44 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
45 |
4 2 3
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ 𝐵 ) |
46 |
42 44 45
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑋 ∈ 𝐵 ) |
47 |
11 4 30 2 3 42 43
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) ) |
48 |
47
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) |
49 |
46 48
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) ) |
50 |
22 44
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
51 |
22
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
52 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
53 |
52
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
54 |
|
rhmghm |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
55 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
56 |
55 30
|
ghmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
57 |
51 53 54 56
|
4syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
58 |
57 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
2 8 30 3
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) |
60 |
50 58 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) |
62 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
11 2 30 8 3 42 62 43
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑦 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
64 |
63
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑦 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
65 |
61 64
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑦 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
66 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
67 |
11 2 30 3 42 43 49 65 12 66
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
68 |
67
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) = ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
70 |
41 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
71 |
39
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) |
72 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
73 |
6
|
ringmgp |
⊢ ( 𝐾 ∈ Ring → 𝑉 ∈ Mnd ) |
74 |
42 44 73
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑉 ∈ Mnd ) |
75 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
76 |
14 75
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
77 |
76
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ∈ ℕ0 ) |
79 |
43 31
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
80 |
72 7 74 78 79
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
81 |
80 32
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
82 |
11 4 30 2 3 42 81
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( 𝑃 ↑ 𝑦 ) ) ) |
83 |
11 2 30 8 3 42 62 81
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
84 |
83
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
85 |
61 84
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
86 |
11 2 30 3 42 81 82 85 12 66
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
87 |
86
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
88 |
71 87
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
89 |
5
|
fveq2i |
⊢ ( .g ‘ 𝑊 ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
90 |
9 89
|
eqtri |
⊢ 𝐷 = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
91 |
6
|
fveq2i |
⊢ ( .g ‘ 𝑉 ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
92 |
7 91
|
eqtri |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
93 |
11 2 30 3 42 43 47 90 92 78
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝐷 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑃 𝐷 𝑋 ) ) ‘ 𝑦 ) = ( 𝑃 ↑ 𝑦 ) ) ) |
94 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
95 |
11 2 30 3 42 43 93 65 94 66
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
96 |
95
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
97 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
98 |
96 97
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
99 |
98
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) |
100 |
|
eqid |
⊢ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
101 |
2 4 94 5 9 8 100 10 22 14 19
|
ply1fermltlchr |
⊢ ( 𝜑 → ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) = ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) = ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
103 |
102
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) |
104 |
103
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑦 ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝑃 𝐷 𝑋 ) ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑦 ) ) |
106 |
11 2 30 3 42 43 47 63 94 66
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
107 |
11 2 30 3 42 43 106 90 92 78
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
108 |
107
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝑃 𝐷 ( 𝑋 ( +g ‘ 𝑆 ) ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
109 |
99 105 108
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
110 |
88 109
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) = ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
111 |
110
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) |
112 |
70 111
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) |
113 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) |
114 |
113
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐾 ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) ) |
115 |
114
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝐾 ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) ) ) |
116 |
37 115
|
mpdd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) ) |
117 |
116
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) |
118 |
117
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) |
119 |
2
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑆 ∈ CRing ) |
120 |
22 119
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
121 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
122 |
120 121
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
123 |
122
|
ringgrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
124 |
51 45
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
125 |
123 124 60
|
3jca |
⊢ ( 𝜑 → ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) ) |
126 |
3 12
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
127 |
125 126
|
syl |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
128 |
18
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
129 |
128
|
eleq1d |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ) ) |
130 |
127 129
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
131 |
1 130 76
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝑃 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑃 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑃 ↑ 𝑦 ) ) ) ) |
132 |
118 131
|
mpbird |
⊢ ( 𝜑 → 𝑃 ∼ 𝐹 ) |