Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p2.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } |
2 |
|
aks6d1c1p2.2 |
|- S = ( Poly1 ` K ) |
3 |
|
aks6d1c1p2.3 |
|- B = ( Base ` S ) |
4 |
|
aks6d1c1p2.4 |
|- X = ( var1 ` K ) |
5 |
|
aks6d1c1p2.5 |
|- W = ( mulGrp ` S ) |
6 |
|
aks6d1c1p2.6 |
|- V = ( mulGrp ` K ) |
7 |
|
aks6d1c1p2.7 |
|- .^ = ( .g ` V ) |
8 |
|
aks6d1c1p2.8 |
|- C = ( algSc ` S ) |
9 |
|
aks6d1c1p2.9 |
|- D = ( .g ` W ) |
10 |
|
aks6d1c1p2.10 |
|- P = ( chr ` K ) |
11 |
|
aks6d1c1p2.11 |
|- O = ( eval1 ` K ) |
12 |
|
aks6d1c1p2.12 |
|- .+ = ( +g ` S ) |
13 |
|
aks6d1c1p2.13 |
|- ( ph -> K e. Field ) |
14 |
|
aks6d1c1p2.14 |
|- ( ph -> P e. Prime ) |
15 |
|
aks6d1c1p2.15 |
|- ( ph -> R e. NN ) |
16 |
|
aks6d1c1p2.16 |
|- ( ph -> ( N gcd R ) = 1 ) |
17 |
|
aks6d1c1p2.17 |
|- ( ph -> P || N ) |
18 |
|
aks6d1c1p2.18 |
|- F = ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) |
19 |
|
aks6d1c1p2.19 |
|- ( ph -> A e. ZZ ) |
20 |
|
isfld |
|- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
21 |
13 20
|
sylib |
|- ( ph -> ( K e. DivRing /\ K e. CRing ) ) |
22 |
21
|
simprd |
|- ( ph -> K e. CRing ) |
23 |
6
|
crngmgp |
|- ( K e. CRing -> V e. CMnd ) |
24 |
22 23
|
syl |
|- ( ph -> V e. CMnd ) |
25 |
15
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
26 |
24 25 7
|
isprimroot |
|- ( ph -> ( y e. ( V PrimRoots R ) <-> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) ) |
27 |
26
|
biimpd |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) ) |
28 |
27
|
imp |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) |
29 |
28
|
simp1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` V ) ) |
30 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
31 |
6 30
|
mgpbas |
|- ( Base ` K ) = ( Base ` V ) |
32 |
31
|
eqcomi |
|- ( Base ` V ) = ( Base ` K ) |
33 |
32
|
a1i |
|- ( ph -> ( Base ` V ) = ( Base ` K ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( Base ` V ) = ( Base ` K ) ) |
35 |
34
|
eleq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` V ) <-> y e. ( Base ` K ) ) ) |
36 |
29 35
|
mpbid |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` K ) ) |
37 |
36
|
ex |
|- ( ph -> ( y e. ( V PrimRoots R ) -> y e. ( Base ` K ) ) ) |
38 |
18
|
a1i |
|- ( ( ph /\ y e. ( Base ` K ) ) -> F = ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) |
39 |
38
|
fveq2d |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( O ` F ) = ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) |
40 |
39
|
fveq1d |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` F ) ` y ) = ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) ) |
41 |
40
|
oveq2d |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( P .^ ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) ) ) |
42 |
22
|
adantr |
|- ( ( ph /\ y e. ( Base ` K ) ) -> K e. CRing ) |
43 |
|
simpr |
|- ( ( ph /\ y e. ( Base ` K ) ) -> y e. ( Base ` K ) ) |
44 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
45 |
4 2 3
|
vr1cl |
|- ( K e. Ring -> X e. B ) |
46 |
42 44 45
|
3syl |
|- ( ( ph /\ y e. ( Base ` K ) ) -> X e. B ) |
47 |
11 4 30 2 3 42 43
|
evl1vard |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( X e. B /\ ( ( O ` X ) ` y ) = y ) ) |
48 |
47
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` X ) ` y ) = y ) |
49 |
46 48
|
jca |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( X e. B /\ ( ( O ` X ) ` y ) = y ) ) |
50 |
22 44
|
syl |
|- ( ph -> K e. Ring ) |
51 |
22
|
crngringd |
|- ( ph -> K e. Ring ) |
52 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
53 |
52
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
54 |
|
rhmghm |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) e. ( ZZring GrpHom K ) ) |
55 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
56 |
55 30
|
ghmf |
|- ( ( ZRHom ` K ) e. ( ZZring GrpHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
57 |
51 53 54 56
|
4syl |
|- ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
58 |
57 19
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` K ) ` A ) e. ( Base ` K ) ) |
59 |
2 8 30 3
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` A ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` A ) ) e. B ) |
60 |
50 58 59
|
syl2anc |
|- ( ph -> ( C ` ( ( ZRHom ` K ) ` A ) ) e. B ) |
61 |
60
|
adantr |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` A ) ) e. B ) |
62 |
58
|
adantr |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( ZRHom ` K ) ` A ) e. ( Base ` K ) ) |
63 |
11 2 30 8 3 42 62 43
|
evl1scad |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( C ` ( ( ZRHom ` K ) ` A ) ) e. B /\ ( ( O ` ( C ` ( ( ZRHom ` K ) ` A ) ) ) ` y ) = ( ( ZRHom ` K ) ` A ) ) ) |
64 |
63
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( C ` ( ( ZRHom ` K ) ` A ) ) ) ` y ) = ( ( ZRHom ` K ) ` A ) ) |
65 |
61 64
|
jca |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( C ` ( ( ZRHom ` K ) ` A ) ) e. B /\ ( ( O ` ( C ` ( ( ZRHom ` K ) ` A ) ) ) ` y ) = ( ( ZRHom ` K ) ` A ) ) ) |
66 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
67 |
11 2 30 3 42 43 49 65 12 66
|
evl1addd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B /\ ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
68 |
67
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) |
69 |
68
|
oveq2d |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) ) = ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
70 |
41 69
|
eqtrd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
71 |
39
|
fveq1d |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` F ) ` ( P .^ y ) ) = ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` ( P .^ y ) ) ) |
72 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
73 |
6
|
ringmgp |
|- ( K e. Ring -> V e. Mnd ) |
74 |
42 44 73
|
3syl |
|- ( ( ph /\ y e. ( Base ` K ) ) -> V e. Mnd ) |
75 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
76 |
14 75
|
syl |
|- ( ph -> P e. NN ) |
77 |
76
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
78 |
77
|
adantr |
|- ( ( ph /\ y e. ( Base ` K ) ) -> P e. NN0 ) |
79 |
43 31
|
eleqtrdi |
|- ( ( ph /\ y e. ( Base ` K ) ) -> y e. ( Base ` V ) ) |
80 |
72 7 74 78 79
|
mulgnn0cld |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ y ) e. ( Base ` V ) ) |
81 |
80 32
|
eleqtrdi |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ y ) e. ( Base ` K ) ) |
82 |
11 4 30 2 3 42 81
|
evl1vard |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( X e. B /\ ( ( O ` X ) ` ( P .^ y ) ) = ( P .^ y ) ) ) |
83 |
11 2 30 8 3 42 62 81
|
evl1scad |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( C ` ( ( ZRHom ` K ) ` A ) ) e. B /\ ( ( O ` ( C ` ( ( ZRHom ` K ) ` A ) ) ) ` ( P .^ y ) ) = ( ( ZRHom ` K ) ` A ) ) ) |
84 |
83
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( C ` ( ( ZRHom ` K ) ` A ) ) ) ` ( P .^ y ) ) = ( ( ZRHom ` K ) ` A ) ) |
85 |
61 84
|
jca |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( C ` ( ( ZRHom ` K ) ` A ) ) e. B /\ ( ( O ` ( C ` ( ( ZRHom ` K ) ` A ) ) ) ` ( P .^ y ) ) = ( ( ZRHom ` K ) ` A ) ) ) |
86 |
11 2 30 3 42 81 82 85 12 66
|
evl1addd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B /\ ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` ( P .^ y ) ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
87 |
86
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` ( P .^ y ) ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) |
88 |
71 87
|
eqtrd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` F ) ` ( P .^ y ) ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) |
89 |
5
|
fveq2i |
|- ( .g ` W ) = ( .g ` ( mulGrp ` S ) ) |
90 |
9 89
|
eqtri |
|- D = ( .g ` ( mulGrp ` S ) ) |
91 |
6
|
fveq2i |
|- ( .g ` V ) = ( .g ` ( mulGrp ` K ) ) |
92 |
7 91
|
eqtri |
|- .^ = ( .g ` ( mulGrp ` K ) ) |
93 |
11 2 30 3 42 43 47 90 92 78
|
evl1expd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( P D X ) e. B /\ ( ( O ` ( P D X ) ) ` y ) = ( P .^ y ) ) ) |
94 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
95 |
11 2 30 3 42 43 93 65 94 66
|
evl1addd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B /\ ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
96 |
95
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) |
97 |
|
eqidd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) |
98 |
96 97
|
eqtrd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) |
99 |
98
|
eqcomd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) = ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) ) |
100 |
|
eqid |
|- ( C ` ( ( ZRHom ` K ) ` A ) ) = ( C ` ( ( ZRHom ` K ) ` A ) ) |
101 |
2 4 94 5 9 8 100 10 22 14 19
|
ply1fermltlchr |
|- ( ph -> ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) = ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) |
102 |
101
|
fveq2d |
|- ( ph -> ( O ` ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) = ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) |
103 |
102
|
fveq1d |
|- ( ph -> ( ( O ` ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) ` y ) = ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) ) |
104 |
103
|
eqcomd |
|- ( ph -> ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( ( O ` ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) ` y ) ) |
105 |
104
|
adantr |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( ( P D X ) ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( ( O ` ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) ` y ) ) |
106 |
11 2 30 3 42 43 47 63 94 66
|
evl1addd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B /\ ( ( O ` ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ` y ) = ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
107 |
11 2 30 3 42 43 106 90 92 78
|
evl1expd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) e. B /\ ( ( O ` ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) ` y ) = ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) ) |
108 |
107
|
simprd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` ( P D ( X ( +g ` S ) ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) ) ` y ) = ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
109 |
99 105 108
|
3eqtrd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( P .^ y ) ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) = ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
110 |
88 109
|
eqtrd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( ( O ` F ) ` ( P .^ y ) ) = ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) ) |
111 |
110
|
eqcomd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ ( y ( +g ` K ) ( ( ZRHom ` K ) ` A ) ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) |
112 |
70 111
|
eqtrd |
|- ( ( ph /\ y e. ( Base ` K ) ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) |
113 |
112
|
adantlr |
|- ( ( ( ph /\ y e. ( V PrimRoots R ) ) /\ y e. ( Base ` K ) ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) |
114 |
113
|
ex |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` K ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) ) |
115 |
114
|
ex |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( y e. ( Base ` K ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) ) ) |
116 |
37 115
|
mpdd |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) ) |
117 |
116
|
imp |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) |
118 |
117
|
ralrimiva |
|- ( ph -> A. y e. ( V PrimRoots R ) ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) |
119 |
2
|
ply1crng |
|- ( K e. CRing -> S e. CRing ) |
120 |
22 119
|
syl |
|- ( ph -> S e. CRing ) |
121 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
122 |
120 121
|
syl |
|- ( ph -> S e. Ring ) |
123 |
122
|
ringgrpd |
|- ( ph -> S e. Grp ) |
124 |
51 45
|
syl |
|- ( ph -> X e. B ) |
125 |
123 124 60
|
3jca |
|- ( ph -> ( S e. Grp /\ X e. B /\ ( C ` ( ( ZRHom ` K ) ` A ) ) e. B ) ) |
126 |
3 12
|
grpcl |
|- ( ( S e. Grp /\ X e. B /\ ( C ` ( ( ZRHom ` K ) ` A ) ) e. B ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B ) |
127 |
125 126
|
syl |
|- ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B ) |
128 |
18
|
a1i |
|- ( ph -> F = ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) ) |
129 |
128
|
eleq1d |
|- ( ph -> ( F e. B <-> ( X .+ ( C ` ( ( ZRHom ` K ) ` A ) ) ) e. B ) ) |
130 |
127 129
|
mpbird |
|- ( ph -> F e. B ) |
131 |
1 130 76
|
aks6d1c1p1 |
|- ( ph -> ( P .~ F <-> A. y e. ( V PrimRoots R ) ( P .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( P .^ y ) ) ) ) |
132 |
118 131
|
mpbird |
|- ( ph -> P .~ F ) |